11 | Tietze Extension Theorem

The Urysohn Lemma, which we proved in the last chapter, shows that every normal space X is equipped with an ample supply of continuous functions $X \rightarrow[0,1]$: any two closed, disjoint sets in X give one such function. However, an inconvenient constraint is that these functions are of very special type: they map one closed set to 0 , and the other one to 1 .

It is easy to modify the Urysohn Lemma to expand this collection of functions a bit:
11.1 Generalized Urysohn Lemma. Let X be a normal space and let $A, B \subseteq X$ be closed sets such that $A \cap B=\varnothing$. For any $a, b \in \mathbb{R}, a<b$ there exists a continuous function $f: X \rightarrow[a, b]$ such that $A \subseteq f^{-1}(\{a\})$ and $B \subseteq f^{-1}(\{b\})$.

Proof. By the Urysohn Lemma 10.1 we can find a function $g: X \rightarrow[0,1]$ such that $g(A)=\{0\}$ and $g(B)=\{1\}$. Take $f=h \circ f$, where $h:[0,1] \rightarrow[a, b]$ is any continuous function such that $h(0)=a$ and $h(1)=b$.

The collection of functions described by Lemma 11.1 is still very narrow: these functions are constant when restricted to either set A or B. The main result of this chapter is to show that such restriction is not necessary; any function defined on a closed subset of a normal space gives a function defined on the whole space:
11.2 Tietze Extension Theorem (v.1). Let X be a normal space, let $A \subseteq X$ be a closed subspace, and let $f: A \rightarrow[a, b]$ be a continuous function for some $[a, b] \subseteq \mathbb{R}$. There exits a continuous function $\bar{f}: X \rightarrow[a, b]$ such that $\left.\bar{f}\right|_{A}=f$.

The main idea of the proof is to use the Urysohn Lemma 10.1 to construct functions $\bar{f}_{n}: X \rightarrow[a, b]$ for $n=1,2, \ldots$ such that as n increases $\left.\bar{f}_{n}\right|_{A}$ gives ever closer approximations of f. Then we take \bar{f} to be
the limit of the sequence $\left\{\bar{f}_{n}\right\}$. We start by looking at sequences of functions and their convergence.
11.3 Definition. Let X, Y be a topological spaces and let $\left\{f_{n}: X \rightarrow Y\right\}$ be a sequence of functions. We say that the sequence $\left\{f_{n}\right\}$ converges pointwise to a function $f: X \rightarrow Y$ if for each $x \in X$ the sequence $\left\{f_{n}(x)\right\} \subseteq Y$ converges to the point $f(x)$.
11.4 Note. If $\left\{f_{n}: X \rightarrow Y\right\}$ is a sequence of continuous functions that converges pointwise to $f: X \rightarrow Y$ then f need not be continuous. For example, let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be the function given by $f_{n}(x)=x^{n}$. Notice that $f_{n}(x) \rightarrow 0$ for all $x \in[0,1)$ and that $f_{n}(1) \rightarrow 1$. Thus the sequence $\left\{f_{n}\right\}$ converges pointwise to the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}0 & \text { for } x \neq 1 \\ 1 & \text { for } x=1\end{cases}
$$

The functions f_{n} are continuous but f is not.
11.5 Definition. Let X be a topological space, let (Y, ϱ) be a metric space, and let $\left\{f_{n}: X \rightarrow Y\right\}$ be a sequence of functions. We say that the sequence $\left\{f_{n}\right\}$ converges uniformly to a function $f: X \rightarrow Y$ if for every $\varepsilon>0$ there exists $N>0$ such that

$$
\varrho\left(f(x), f_{n}(x)\right)<\varepsilon
$$

for all $x \in X$ and for all $n>N$.
11.6 Note. If a sequence $\left\{f_{n}\right\}$ converges uniformly to f then it also converges pointwise to f, but the converse is not true in general.
11.7 Proposition. Let X be a topological space and let (Y, ϱ) be a metric space. Assume that $\left\{f_{n}: X \rightarrow Y\right\}$ is a sequence of functions that converges uniformly to $f: X \rightarrow Y$. If all functions f_{n} are continuous then f is also a continuous function.

Proof. Let $U \subseteq Y$ be an open set. We need to show that the set $f^{-1}(U) \subseteq X$ is open. If suffices to check that each point $x_{0} \in f^{-1}(U)$ has an open neighborhood V such that $V \subseteq f^{-1}(U)$. Since U is an open set there exists $\varepsilon>0$ such $B\left(f\left(x_{0}\right), \varepsilon\right) \subseteq U$. Choose $N>0$ such that $\varrho\left(f(x), f_{N}(x)\right)<\frac{\varepsilon}{3}$ for all $x \in X$, and take $V=f_{N}^{-1}\left(B\left(f_{N}\left(x_{0}\right), \frac{\varepsilon}{3}\right)\right)$. Since f_{N} is a continuous function the set V is an open neighborhood of x_{0} in X. It remains to show that $V \subseteq f^{-1}(U)$. For $x \in V$ we have:

$$
\varrho\left(f(x), f\left(x_{0}\right)\right) \leq \varrho\left(f(x), f_{N}(x)\right)+\varrho\left(f_{N}(x), f_{N}\left(x_{0}\right)\right)+\varrho\left(f_{N}\left(x_{0}\right), f\left(x_{0}\right)\right)<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
$$

This means that $f(x) \in B\left(f\left(x_{0}\right), \varepsilon\right) \subseteq U$, and so $x \in f^{-1}(U)$.

11.8 Lemma. Let X be a normal space, $A \subseteq X$ be a closed set, and let $f: A \rightarrow \mathbb{R}$ be a continuous function such that for some $C>0$ we have $|f(x)| \leq C$ for all $x \in A$. There exists a continuous function $g: X \rightarrow \mathbb{R}$ such that $|g(x)| \leq \frac{1}{3} C$ for all $x \in X$ and $|f(x)-g(x)| \leq \frac{2}{3} C$ for all $x \in A$.

Proof. Define $Y:=f^{-1}\left(\left[-C,-\frac{1}{3} C\right]\right), Z:=f^{-1}\left(\left[\frac{1}{3} C, C\right]\right)$. Since $f: A \rightarrow \mathbb{R}$ is a continuous function these sets are closed in A, but since A is closed in X the sets Y and Z are also closed in X. Since $Y \cap Z=\varnothing$ by the Generalized Urysohn Lemma 11.1 there exists a continuous function $g: X \rightarrow\left[-\frac{C}{3}, \frac{C}{3}\right]$ such that $g(x)=-\frac{C}{3}$ for all $x \in Y$ and $g(x)=\frac{C}{3}$ for all $x \in Z$. It is straightforward to check that $|f(x)-g(x)| \leq \frac{2}{3} C$ for all $x \in A$.

Proof of Theorem 11.2. Since f takes values in an interval $[a, b]$, we can find a number $C>0$ such that $|f(x)| \leq C$ for all $x \in A$. For $n=1,2, \ldots$ we will construct continuous functions $g_{n}: X \rightarrow \mathbb{R}$ such that
(i) $\left|g_{n}(x)\right| \leq \frac{1}{3} \cdot\left(\frac{2}{3}\right)^{n-1} \cdot C$ for all $x \in X$;
(ii) $\left|f(x)-\sum_{i=1}^{n} g_{i}(x)\right| \leq\left(\frac{2}{3}\right)^{n} \cdot C$ for all $x \in A$.

We argue by induction. Existence of g_{1} follows directly from Lemma 11.8. Assume that for some $n \geq 1$ we already have functions g_{1}, \ldots, g_{n} satisfying (i) and (ii). Apply Lemma 11.8 to the function $f-\sum_{k=1}^{n} g_{k}$. We can take $g_{n+1}:=g$ where g is the function given by the lemma.

Let $\bar{f}_{n}:=\sum_{k=1}^{n} g_{k}$ and let $\bar{f}_{\infty}:=\sum_{k=1}^{\infty} g_{k}$. Using condition (i) we obtain that the sequence $\left\{\bar{f}_{n}\right\}$ converges uniformly to \bar{f} (exercise). Since each of the functions \bar{f}_{n} is continuous, by Proposition 11.7 we obtain that \bar{f}_{∞} is a continuous function. Also, using (ii) be obtain that $\bar{f}_{\infty}(x)=f(x)$ for all $x \in A$ (exercise).

The only remaining issue is that the function \bar{f}_{∞} takes its values in \mathbb{R}, and not in the interval $[a, b]$. However, it is not difficult to modify it to obtain a continuous function $\bar{f}: X \rightarrow[a, b]$ such that $\bar{f}(x)=\bar{f}_{\infty}(x)$ for all $x \in A$ (exercise).

Here is another useful reformulation of Tietze Extension Theorem:
11.9 Tietze Extension Theorem (v.2). Let X be a normal space, let $A \subseteq X$ be a closed subspace, and let $f: A \rightarrow \mathbb{R}$ be a continuous function. There exits a continuous function $\bar{f}: X \rightarrow \mathbb{R}$ such that $\left.\bar{f}\right|_{A}=f$.

Proof. It is enough to show that for any continuous function $g: A \rightarrow(-1,1)$ we can find a continuous function $\bar{g}: X \rightarrow(-1,1)$ such that $\left.\bar{g}\right|_{A}=g$. Indeed, if this holds then given a function $f: A \rightarrow \mathbb{R}$ let $g=h f$ where $h: \mathbb{R} \rightarrow(-1,1)$ is an arbitrary homeomorphism. Then we can take $\bar{f}=h^{-1} \bar{g}$.

Assume then that $g: A \rightarrow(-1,1)$ is a continuous function. By Theorem 11.2 there is a function $g_{1}: X \rightarrow[-1,1]$ such that $\left.g_{1}\right|_{A}=g$. Let $B:=g_{1}^{-1}(\{-1,1\})$. The set B is closed in X and $A \cap B=\varnothing$ since $g_{1}(A)=g(A) \subseteq(-1,1)$. By Urysohn Lemma 10.1 there is a continuous function $k: X \rightarrow[0,1]$ such that $B \subseteq k^{-1}(\{0\})$ and $A \subseteq k^{-1}(\{1\})$. Let $\bar{g}(x):=k(x) \cdot g_{1}(x)$. We have:

1) if $g_{1}(x) \in(-1,1)$ then $\bar{g}(x) \in(-1,1)$
2) if $g_{1}(x) \in\{-1,1\}$ then $x \in B$ so $\bar{g}(x)=0 \cdot g_{1}(x)=0$

It follows that $\bar{g}: X \rightarrow(-1,1)$. Also, \bar{g} is a continuous function since k and g_{1} are continuous. Finally, if $x \in A$ then $\bar{g}(x)=1 \cdot g_{1}(x)=g(x)$, so $\left.\bar{g}\right|_{A}=g$.

Tietze Extension Theorem holds for functions defined on normal spaces. It turns out the function extension property is actually equivalent to the notion of normality of a space:
11.10 Theorem. Let X be a space satisfying T_{1}. The following conditions are equivalent:

1) X is a normal space.
2) For any closed sets $A, B \subseteq X$ such that $A \cap B=\varnothing$ there is a continuous function $f: X \rightarrow[0,1]$ such that such that $A \subseteq f^{-1}(\{0\})$ and $B \subseteq f^{-1}(\{1\})$.
3) If $A \subseteq X$ is a closed set then any continuous function $f: A \rightarrow \mathbb{R}$ can be extended to a continuous function $\bar{f}: X \rightarrow \mathbb{R}$.

Proof. The implication 1) $\Rightarrow 2$) is the Urysohn Lemma 10.1 and 2) $\Rightarrow 1$) is Proposition 9.15. The implication 1$) \Rightarrow 3$) is the Tietze Extension Theorem 11.9. The proof of implication 3) $\Rightarrow 1$) is an exercise.

Exercises to Chapter 11

E11.1 Exercise. The goal of this exercise is to fill a gap in the proof of Theorem 11.2. For a topological space X and $A \subseteq X$ let $f: A \rightarrow[a, b]$ and $\bar{f}: X \rightarrow \mathbb{R}$ be continuous functions satisfying $\bar{f}(x)=f(x)$ for all $x \in A$. Show that there exists a continuous function $\bar{f}^{\prime}: X \rightarrow[a, b]$ such that $\bar{f}^{\prime}(x)=f(x)$ for all $x \in A$.

E11.2 Exercise. Prove implication 3) $\Rightarrow 1$) of Theorem 11.10.
E11.3 Exercise. Let X be a normal space, let $A \subseteq X$ be a closed subspace, and let $f: A \rightarrow \mathbb{R}$ be a continuous function.
a) Assume that $g: X \rightarrow \mathbb{R}$ is a continuous function such that $f(x) \leq g(x)$ for all $x \in A$. Show that there exists a continuous function $F: X \rightarrow \mathbb{R}$ satisfying $\left.F\right|_{A}=f$ and $F(x) \leq g(x)$ for all $x \in X$.
b) Assume that $g, h: X \rightarrow \mathbb{R}$ are a continuous function such that $h(x) \leq f(x) \leq g(x)$ for all $x \in A$ and $h(x) \leq g(x)$ for all $x \in X$. Show that there exists a continuous function $F^{\prime}: X \rightarrow \mathbb{R}$ satisfying $\left.F^{\prime}\right|_{A}=f$ and $h(x) \leq F^{\prime}(x) \leq g(x)$ for all $x \in X$.

E11.4 Exercise. Recall that if X is a topological space then a subspace $Y \subseteq X$ is a called a retract of X if there exists a continuous function $r: X \rightarrow Y$ such that $r(x)=x$ for all $x \in Y$. Let X be a normal space and let $Y \subseteq X$ be a closed subspace of X such that $Y \cong \mathbb{R}$. Show that Y is a retract of X.
E11.5 Exercise. Let X be topological space. Recall from Exercise 10.3 that a set $A \subseteq X$ is a G_{δ}-set if there exists a countable family of open sets U_{1}, U_{2}, \ldots such that $A=\bigcap_{n=1}^{\infty} U_{n}$.
a) Show that if X is a normal space and $A \subseteq X$ is a closed G_{δ}-set then there exists a continuous function $f: X \rightarrow[0,1]$ such that $A=f^{-1}(\{0\})$.
b) Show that if X is a normal space and $A, B \subseteq X$ are closed G_{δ}-sets such that $A \cap B=\varnothing$ then there exists a continuous function $f: X \rightarrow[0,1]$ such that $A=f^{-1}(\{0\})$ and $B=f^{-1}(\{1\})$.

E11.6 Exercise. Assume that we have a sequence of spaces

$$
X_{1} \subseteq X_{1} \subseteq X_{2} \subseteq \ldots
$$

Let $X_{\infty}=\bigcup_{n=1}^{\infty}$. Define a topology on X_{∞} in such way that a set $U \subseteq X_{\infty}$ is open in X_{∞} if and only if the set $U \cap X_{n}$ is open in X_{n} for each $n=1,2, \ldots$.
a) Show that a function $f: X_{\infty} \rightarrow Y$ is continuous if and only if its restriction $\left.f\right|_{X_{n}}: X_{n} \rightarrow Y$ is continuous for each $n=1,2, \ldots$.
b) Assume that for each n the space X_{n} is normal, and that X_{n} is closed in X_{n+1}. Show that X_{∞} is normal. (Hint: Use Proposition 9.15).

