
4 | Basis, Subbasis,
Subspace

Our main goal in this chapter is to develop some tools that make it easier to construct examples oftopological spaces. By Definition 3.12 in order to define a topology on a set X we need to specifywhich subsets of X are open sets. It can difficult to describe all open sets explicitly, so topologicalspaces are often defined by giving either a basis or a subbasis of a topology. Interesting topologicalspaces can be also obtained by considering subspaces of topological spaces. We explain these notionsbelow.
4.1 Definition. Let X be a set and let B be a collection of subsets of X . The collection B is a basison X if it satisfies the following conditions:1) X = ⋃V∈B V ;2) for any V1, V2 ∈ B and x ∈ V1 ∩ V2 there exists W ∈ B such that x ∈ W and W ⊆ V1 ∩ V2.
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4.2 Example. If (X, ρ) is a metric space then the set B = {B(x, r) | x ∈ X, r > 0} consisting of allopen balls in X is a basis on X (exercise).
4.3 Proposition. Let X be a set, and let B be a basis on X . Let T denote the collection of all subsets
U ⊆ X that can be obtained as the union of some elements of B: U = ⋃

V∈B1 V for some B1 ⊆ B.
Then T is a topology on X .
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Proof. Exercise.
4.4 Definition. Let B be a basis on a set X and let T be the topology defined as in Proposition 4.3.In such case we will say that B is a basis of the topology T and that T is the topology defined by the
basis B.
4.5 Example. Let (X, ρ) be a metric space, let T be the topology on X induced by ρ, and let B be thecollection of all open balls in X . Directly from the definition of the topology T (3.14) it follows that Bis a basis of T.
4.6 Example. Consider Rn with the Euclidean metric d. Let B be the collection of all open balls
B(x, r) ⊆ Rn such that r ∈ Q and x = (x1, x2, . . . , xn) where x1, . . . , xn ∈ Q. Then B is a basis of theEuclidean topology on Rn (exercise).
4.7 Note. If a topological space X has a basis consisting of countably many sets then we say that Xsatisfies the 2 nd countability axiom or that X is second countable. Since the set of rational numbers iscountable it follows that the basis of the Euclidean topology given in Example 4.6 is countable. Thus,
Rn with the Euclidean topology is a second countable space. Second countable spaces have someinteresting properties, some of which we will encounter later on.
4.8 Example. The set B = {[a, b) | a, b ∈ R} is a basis of a certain topology on R. We will call itthe arrow topology.
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R

4.9 Example. Let B = {[a, b] | a, b ∈ R}. The set B is a basis of the discrete topology on R (exercise).
4.10 Example. Let X = {a, b, c, d} and let B = {{a, b, c}, {b, c, d}}. The set B is not a basis of anytopology on X since b ∈ {a, b, c} ∩ {b, c, d}, and B does not contain any subset W such that b ∈ Wand W ⊆ {a, b, c} ∩ {b, c, d}.
4.11 Proposition. Let X be a set and let S be any collection of subsets of X such that X = ⋃V∈S V .
Let T denote the collection of all subsets of X that can be obtained using two operations:

1) taking finite intersections of sets in S;
2) taking arbitrary unions of sets obtained in 1).

Then T is a topology on X .

Proof. Exercise.
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4.12 Definition. Let X be a set and let S be any collection of subsets of X such that X = ⋃
V∈S V .The topology T defined by Proposition 4.11 is called the topology generated by S, and the collection

S is called a subbasis of T.
4.13 Example. If X = {a, b, c, d} and S = {{a, b, c}, {b, c, d}} then the topology generated by S is
T = {{a, b, c}, {b, c, d}, {b.c}, {a, b, c, d},∅}.
The notions of a basis and a subbasis provide shortcuts for defining topologies: it is easier to specifya basis of a topology than to define explicitly the whole topology (i.e. to describe all open sets).Specifying a subbasis is even easier. The price we pay for this convenience is that it is more difficultto identify which sets are open if we know only a basis or a subbasis of a topology:

topology T

open sets:elements of T
basis B

open sets:unions of elements of B
subbasis S

open sets:unions of finite intersectionsof elements of Seasier to define

easier to identifyopen sets

The next proposition often simplifies checking if a function between topological spaces is continuous:
4.14 Proposition. Let (X,TX ), (Y ,TY ) be topological spaces, and let B be a basis (or a subbasis) of
TY . A function f : X → Y is continuous if and only if f−1(V ) ∈ TX for every V ∈ B.

Proof. Exercise.
A useful way of obtaining new examples of topological spaces is by considering subspaces of existingspaces:
4.15 Definition. Let (X,T) be a topological space and let Y ⊆ X . The collection

TY = {Y ∩ U | U ∈ T}
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is a topology on Y called the subspace topology. We say that (Y ,TY ) is a subspace of the topologicalspace (X,T).

Y

X

U ∩ Y

U U is open in X

U ∩ Y is open in Y

4.16 Example. The unit circle S1 is defined by
S1 := {(x1, x2) ∈ R2 | x21 + x22 = 1}The circle S1 is a topological space considered as a subspace of R2.

open in R2
open in S1

In general the n-dimensional sphere Sn is defined by
Sn := {(x1, . . . , xn+1) ∈ Rn+1 | x21 + · · ·+ x2

n+1 = 1}It is a topological space considered as a subspace of Rn+1.
4.17 Example. Consider Z as a subspace of R. The subspace topology on Z is the same as the discretetopology (exercise).
4.18 Proposition. Let X be a topological space and let Y be its subspace.

1) The inclusion map j : Y → X is a continuous function.
2) If Z is a topological space then a function f : Z → Y is continuous if and only if the composition
jf : Z → X is continuous.

Proof. Exercise.
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4.19 Proposition. Let X be a topological space and let Y be its subspace. If B is a basis (or a
subbasis) of X then the set BY = {U ∩ Y | U ∈ B} is a basis (resp. a subbasis) of Y .

Proof. Exercise.

Exercises to Chapter 4

E4.1 Exercise. Prove Proposition 4.3
E4.2 Exercise. Verify the statement of Example 4.6.
E4.3 Exercise. Verify the statement of Example 4.9.
E4.4 Exercise. Prove Proposition 4.11.
E4.5 Exercise. Prove Proposition 4.14.
E4.6 Exercise. Consider the interval [0, 1] as a subspace of R. Determine which of the following setsare open in [0, 1]. Justify your answers.a) (12 , 1) b) (12 , 1] c) (13 , 23) d) (13 , 23]
E4.7 Exercise. Verify the statement of Example 4.17.
E4.8 Exercise. Prove Proposition 4.18.
E4.9 Exercise. The goal of this exercise if to show that the subspace topology is uniquely determinedby the properties listed in Proposition 4.18. Let X be a topological space, let Y ⊆ X and let j : Y → Xbe the inclusion map. Let T be a topology on Y , and let YT denote Y considered as a topologicalspace with respect to the topology T. Assume that YT satisfies the following conditions:1) The map j : YT → X is a continuous function.2) If Z is a topological space then a function f : Z → YT is continuous if and only if the composition
jf : Z → X is continuous.Show that T is the subspace topology on Y . That is, show that U ∈ T if and only if U = Y ∩U ′ where
U ′ is some open set in X .
E4.10 Exercise. Recall that a topological space X is second countable if the topology on X has acountable basis. Show that the discrete topology on a set X is second countable if and only if X is acountable set.
E4.11 Exercise. Show that R with the arrow topology is not second countable. (Hint: Assume bycontradiction that B = {V1, V2, . . . } is a countable basis of the arrow topology. Let αi = inf Vi. Take
α0 ∈ Rr {α1, α2, . . . }. Show that the set [α0, α0 + 1) is not a union of sets from B).
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E4.12 Exercise. Let T1 and T2 be two topologies on the same set X . We say that the topology T2 is
finer than T1 if T1 ⊆ T2 (e.i. if every open set in T1 is also open in T2). Let TAr be the arrow topologyon R and let TEu be the Euclidean topology on R. Show that TAr is finer than TEu.


