
3 | Open Sets

We have seen that by equipping sets X , Y with metrics we can specify what it means that a function
f : X → Y is continuous. In general continuity of functions depends on the choice of metrics: if wehave two different metrics on X (or on Y ) then a function f : X → Y that is continuous with respect toone of these metrics may be not continuous with respect to the other. This is however not always thecase. Our first goal in this chapter will be to show that if two metrics on X or Y are equivalent thenfunctions continuous with respect to one of them are continuous with respect to the other and viceversa.
3.1 Definition. Let ρ1 and ρ2 be two metrics on the same set X . We say that the metrics ρ1 and ρ2 are
equivalent if for every x ∈ X and for every r > 0 there exist s1, s2 > 0 such that Bρ1(x, s1) ⊆ Bρ2(x, r)and Bρ2(x, s2) ⊆ Bρ1(x, r).
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3.2 Proposition. Let ρ1, ρ2 be equivalent metrics on a set X , and let µ1, µ2 be equivalent metrics on
a set Y . A function f : X → Y is continuous with respect to the metrics ρ1 and µ1 if and only if it is
continuous with respect to the metrics ρ2 and µ2.

Proof. Assume that f is continuous with respect to ρ1 and µ1. We will show that it is also continuouswith respect to ρ2 and µ2 (the argument in the other direction is the same). Let x ∈ X and let
ε > 0. We need to show that there is δ > 0 such that Bρ2(x, δ) ⊆ f−1(Bµ2(f (x), ε))). Since themetrics µ1 and µ2 are equivalent there exists ε1 > 0 such that Bµ1(f (x), ε1)) ⊆ Bµ2(f (x), ε)), and so
f−1(Bµ1(f (x), ε1))) ⊆ f−1(Bµ2(f (x), ε))). Also, since by assumption f is continuous with respect to ρ1

19



3. Open Sets 20

and µ1, there is δ1 such that Bρ1(x, δ1) ⊆ f−1(Bµ1(f (x), ε1))). Finally, using equivalence of metrics ρ1and ρ2 we obtain that there exists δ > 0 such that Bρ2(x, δ) ⊆ Bρ1(x, δ1). Combining these inclusionswe get Bρ2(x, δ) ⊆ f−1(Bµ2(f (x), ε))).
3.3 Example. The Euclidean metric d, the orthogonal metric ρort and the maximum metric ρmax areequivalent metrics on Rn (exercise).
3.4 Example. The following metrics on R2 are not equivalent to one another: the Euclidean metric d,the hub metric ρh, and the discrete metric ρdisc (exercise).
Every metric defines open balls, but even if metrics are equivalent their open balls may look verydifferently (compare e.g. open balls in R2 taken with respect to d and ρort). It turns out, however, thateach metric defines also a collection of so-called open sets, and that open sets defined by two metricsare the same precisely when these metrics are equivalent.
3.5 Definition. Let (X, ρ) be a metric space. A subset U ⊆ X is an open set if U is a union of (perhapsinfinitely many) open balls in X : U = ⋃i∈I B(xi, ri).

X
U

3.6 Proposition. Let (X, ρ) be a metric space and let U ⊆ X . The following conditions are equivalent:
1) The set U is open.
2) For every x ∈ U there exists rx > 0 such that B(x, rx ) ⊆ U .

Proof. Exercise.
3.7 Proposition. Let X be a set and let ρ1, ρ2 be two metrics on X . The following conditions are
equivalent:

1) The metrics ρ1 and ρ2 are equivalent.
2) A set U ⊆ X is open with respect to the metric ρ1 if and only if it is open with respect to the

metric ρ2.
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Proof. 1) ⇒ 2) Assume that ρ1 and ρ2 are equivalent and that the set U is open with respect to ρ1. ByProposition 3.6 this means that for every x ∈ U there exists rx > 0 such that Bρ1(x, rx ) ⊆ U . Since themetric ρ1 is equivalent to ρ2 we can find sx > 0 such that Bρ2(x, sx ) ⊆ Bρ1(x, rx ). As a consequence forevery x ∈ U we have B(x, sx ) ⊆ U .

x

X

U
Bρ2 (x, sx )
Bρ1 (x, rx )

Using Proposition 3.6 again we get that the set U is open with respect to ρ2. By the same argumentwe obtain that if U is open with respect to ρ2 then it is open with respect to ρ1.2) ⇒ 1) Exercise.
Here are some basic properties of open sets in metric spaces:
3.8 Proposition. Let (X, ρ) be a metric space.

1) The sets X and ∅ are open sets.
2) If Ui is an open set for i ∈ I then the set

⋃
i∈I Ui is open.

3) If U1, U2 are open sets then the set U1 ∩ U2 is open.

Proof. Exercise.
3.9 Note. From part 3) of Proposition 3.8 is follows that if {U1, . . . , Un} is a finite family of open setsthen U1 ∩ · · · ∩ Un is open. However, if {Ui}i∈I is an infinite family of open sets then in general theset ⋂i∈I Ui need not be open (exercise).
Our original definition of a continuous function between metric spaces stated that continuous functionsbehave well with respect to open balls. The next proposition says that in order to check if a function iscontinuous it is enough to know how it behaves with respect to open sets:
3.10 Proposition. Let (X, ρ), (Y , µ) be metric spaces and let f : X → Y be a function. The following
conditions are equivalent:
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1) The function f is continuous.
2) For every open set U ⊆ Y the set f−1(U) is open in X .

The proof of Proposition 3.10 will use the following fact:
3.11 Lemma. Let (X, ρ), (Y , µ) be metric spaces and let f : X → Y be a continuous function. If
B := B(y0, r) is an open ball in Y then the set f−1(B) is open in X .

Proof. Exercise.
Proof of Proposition 3.10. 1) ⇒ 2) Assume that f : X → Y is a continuous function and that U ⊆ Y isan open set. By definition this means that U is a union of some collection of open balls in Y :

U =⋃
i∈I
Bµ(yi, ri)

This gives:
f−1(U) = f−1(⋃

i∈I
Bµ(yi, ri)) =⋃

i∈I
f−1(Bµ(yi, ri))

Since by Lemma 3.11 each of the sets f−1(Bµ(yi, ri) is open in X and by Proposition 3.8 a union ofopen sets is open we obtain that the set f−1(U) is open in X .2) ⇒ 1) Assume that f−1(U) is open in X for every open set U ⊆ Y . Given x ∈ X and ε > 0 take
U = Bµ(f (x), ε). By assumption the set f−1(Bµ(f (x), ε)) ⊆ X is open. Since x ∈ f−1(Bµ(f (x), ε)) thisimplies that there exists δ > 0 such that Bρ(x, δ) ⊆ f−1(Bµ(f (x), ε)). This shows that f is a continuousfunction.
Recall that we introduced metric spaces in order to be able to define continuity of functions. Proposition3.10 says however that to define continuity we don’t really need to use metrics, it is enough to knowwhich sets are open. This observation leads to the following generalization of the notion of a metricspace:
3.12 Definition. Let X be a set. A topology on X is a collection T of subsets of X satisfying thefollowing conditions:1) X,∅ ∈ T;2) If Ui ∈ T for i ∈ I then ⋃i∈I Ui ∈ T;3) If U1, U2 ∈ T then U1 ∩ U2 ∈ T.Elements of T are called open sets.A topological space is a pair (X,T) where X is a set and T is a topology on X .
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In the setting of topological spaces we can define continuous functions as follows:
3.13 Definition. Let (X,TX ), (Y ,TY ) be topological spaces. A function f : X → Y is continuous if forevery U ∈ TY we have f−1(U) ∈ TX .
3.14 Example. If (X, ρ) is a metric space then X is a topological space with the topology

T = {U ⊆ X | U is a union of open balls}
We say that the topology T is induced by the metric ρ.
3.15 Note. From now on, unless indicated otherwise, we will consider Rn as a topological space withthe topology induced by the Euclidean metric.
3.16 Example. Let X be an arbitrary set and let

T = {all subsets of X}
The topology T is called the discrete topology on X . If X is equipped with this topology then we saythat it is a discrete topological space.Note that the discrete topology is induced by the discrete metric ρdisc on X . Indeed, for x ∈ X we have

Bρdisc
(
x, 12) = {x}

so for any subset U ⊆ X we get
U = ⋃

x∈U
Bρdisc

(
x, 12)

3.17 Example. Let X be an arbitrary set and let
T = {X,∅}

The topology T is called the antidiscrete topology on X .
3.18 Example. Let X = R and let

T = {U ⊆ R | U = ∅ or U = (Rr S) for some finite set S ⊆ R}

The topology T is called the Zariski topology on R.
One can ask whether for every topological space (X,T) we can find a metric ρ on X such that thetopology T is induced by ρ. Our next goal is to show that this is not the case: some topologies do notcome from any metric. Thus, the notion of a topological space is more general than that of a metricspace.
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3.19 Definition. A topological space (X,T) is metrizable if there exists a metric ρ on X such that T isthe topology induced by ρ.
3.20 Lemma. If (X,T) is a metrizable topological space and x, y ∈ X are points such that x 6= y then
there exists an open set U ⊆ X such that x ∈ U and y 6∈ U .

Proof. Exercise.
3.21 Proposition. If X is a set containing more than one point then the antidiscrete topology on X is
not metrizable.

Proof. This follows directly from Lemma 3.20.

Exercises to Chapter 3

E3.1 Exercise. Verify the statement of Example 3.3.
E3.2 Exercise. Verify the statement of Example 3.4.
E3.3 Exercise. The goal of this exercise is to show that the converse of Proposition 3.2 is also true.Let X be a set and let ρ1, ρ2 be two metrics on X .a) Assume that for each metric space (Y , µ) and for each function f : X → Y the function f is continuouswith respect to ρ1 and µ if and only if it is continuous respect to ρ2 and µ. Show that ρ1 and ρ2 mustbe equivalent metrics.b) Assume that for each metric space (Y , µ) and for each function g : Y → X the function g is continuouswith respect to µ and ρ1 if and only if it is continuous respect to µ and ρ2. Show that ρ1 and ρ2 mustbe equivalent metrics.
E3.4 Exercise. Prove Proposition 3.6.
E3.5 Exercise. Consider the set R2 with the Euclidean metric.a) Show that the open half plane H = {(x1, x2) ∈ R2 | x2 > 0} is an open set in R2
b) Show that the closed half plane H = {(x1, x2) ∈ R2 | x2 ≥ 0} is not an open set in R2
E3.6 Exercise. Consider the set R2 with the hub metric ρh. Show that the set

A = {(x1, x2) ∈ R2 | x2 ≥ −1}
is an open set in R2
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E3.7 Exercise. Consider the set R with the Euclidean metric. Show that every open set in R is a
disjoint union of open intervals (a, b) (where possibly a = −∞ or b = +∞).
E3.8 Exercise. Prove the implication 2) ⇒ 1) of Proposition 3.7.
E3.9 Exercise. Prove Proposition 3.8.
E3.10 Exercise. Consider the set R2 with the Euclidean metric. Give an example of open sets
U1, U2, . . . , in R2 such that the set ⋂∞n=1 Ui is not open.
E3.11 Exercise. Prove Lemma 3.11.
E3.12 Exercise. Prove Lemma 3.20.
E3.13 Exercise. Show that the set R with the Zariski topology is not metrizable.
E3.14 Exercise. Let X be a topological space consisting of a finite number of points. Show that if Xis metrizable then it is a discrete space.
E3.15 Exercise. Let REu denote the set R with the Euclidean topology and RZa the set R with theZariski topology. Show that every continuous function f : RZa → REu must be constant.


