
Math 424 B / 574 B Due Wednesday, Dec 02
Autumn 2015

Solutions for Homework 8

Solution for Problem 17, page 100. I will give a proof that does not follow the hint in
the book.

Denote by S ⊆ (a, b) the set of simple discontinuities of f . A point x ∈ (a, b) is a simple
discontinuity if and only if f(x+) and f(x−) both exist and f(x−), f(x) and f(x+) are not
all equal, S is the union of the sets

S+ = {x ∈ S : f(x) 6= f(x+)}
and

S− = {x ∈ S : f(x) 6= f(x−)}.
This means that it suffices to show that both S+ and S− are at most countable. I will do
this for S+, since the argument for S− works in exactly the same way.

Now, if the two numbers f(x) and f(x+) are different, the absolute value |f(x) − f(x+)|
is ≥ 1

n for some positive integer n. This means that we have

S+ =
∞⋃
n=1

S+
n ,

where

S+
n =

{
x ∈ S+ : |f(x)− f(x+)| ≥ 1

n

}
.

The union of countably many sets that are at most countable is at most countable (by the
corollary to Theorem 2.12 from the book), so it’s enough to show that each S+

n is at most
countable. This is what we set out to prove now.

The proof proceeds by contradiction: suppose that for some positive integer n the set S+
n

is uncountable. Then, some point x ∈ S+
n is a limit point of S+

n (take this as an exercise;
Problem E2 from your next homework asks you to prove that for an uncountable set E of
real numbers, some element of E).

In conclusion, we can find a sequence (xm)m in S+
n \ {x} that converges to x. Moreover,

since either infinitely many xm are bigger than x or infinitely many of them are smaller than
x, we can assume only one of those things is true (that is, either xm > x for all m or xm < x
for all m). The two assumptions will lead to parallel proofs, so without loss of generality
assume that xm > x for all m.

Now, we have xm → x from above, so by the definition of f(x+) (and since we know this
number exists) we have

f(xm)→ f(x+). (1)

On the other hand, each xm belongs to S+
n , so by the definition of this set we can find ym > x

with

xm < ym < xm +
1

n
(2)

such that |f(xm)− f(ym)| ≥ 1
n .
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Now, on the one hand, (2) means that ym → x from above and hence

f(ym)→ f(x+). (3)

On the other hand though, |f(xm)− f(ym)| ≥ 1
n and (1) together imply

|f(ym)− f(x+)| ≥ 1

n
. (4)

Clearly, (3) and (4) are mutually contradictory, so we have our contradiction and are done. �

Throughout this assignment the letter I denotes an interval in R in the sense of Definition
2.17 in your book, i.e. a set of the form [a, b] for some a < b ∈ R. The interior of an interval
[a, b] means everything in the interval except for its endpoints, i.e. (a, b).

I will drop the term ’monotonically’ from ’monotonically increasing’ and ’monotonically
decreasing’ for brevity.

For the first problem, I’ll need the following notion.

Definition 1. Let f : X → R be a function defined on a metric space (X, d).
A local maximum for f is a point x ∈ X for which there is some δ > 0 such that

f(x′) ≤ f(x) for all x′ ∈ X such that d(x′, x) ≤ δ.

(in other words, the largest value of f in the δ-neighborhood of x is achieved at x).
Similarly, a local minimum of f is a point x ∈ X such that

f(x′) ≥ f(x) for all x′ ∈ X such that d(x′, x) ≤ δ.

(i.e. the smallest value of f in the δ-neighborhood of x is achieved at x). �

With this in place, the first problem reads as follows.

E1. Show that if f : I → R is continuous and has no local maxima or minima in the
interior of I, then it is monotonic.

Before going into the proof of this, I will prove an auxiliary result that helps with both
Problem E1 and Problem E2.

Lemma 2. If f : I → R is not monotonic, then there are points x < y < z such that either

f(x) < f(y) > f(z) (5)

or

f(x) > f(y) < f(z). (6)

Proof. Suppose f is not monotonic. This means that we can find p < q ∈ I such that
f(p) < f(q) and also u < v ∈ I with f(u) > f(v). Assume without loss of generality that
q ≤ v; if not, we can simply interchange the roles of p and u, the roles of q and v, and switch
from f to −f .

We further consider three cases.
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Case 1: q ≤ u. So the ordering is p < q ≤ u < v. If f(q) ≤ f(u) then you can take x = p,
y = u and z = v and you’ve got (5). On the other hand, if f(q) > f(u) take x = p, y = q and
z = v and again you have (5).

Case 2: u ≤ p. Our four numbers are ordered as u ≤ p < q ≤ v. If f(u) ≤ f(p) take
x = p, y = q and z = v and you have (7). Otherwise, if f(u) > f(p) set x = u, y = p and
z = q, and you get (6).

Case 3: u ∈ (p, q). The ordering of the four numbers is now p < u < q ≤ v. If f(u) is
outside the interval [f(p), f(q)] then set x = p, y = u and z = q and you have either (5) or
(6). If f(p) ≤ f(u) ≤ f(q) then f(v) < f(u) ≤ f(q) and setting x = p, y = q and z = v gets
you (5). �

With this in our toolkit we can give the

Solution to Problem E1. The proof is by contradiction, assuming f satisfies the conditions
in the statement and is not monotonic. We can then apply Lemma 2. To fix ideas, I will
assume throughout this proof that we have x < y < z such that (5) holds; the other case is
entirely analogous.

Since f(y) is larger than both f(x) and f(z), neither f(x) nor f(z) can be the maximum
value of f over [x, z]. But there is some t ∈ [x, z] where the restriction of f to [x, z] reaches
its maximum, by Theorem 4.16 (because [x, z] is compact).

The number t must be in the interior of [x, z] (since it’s neither x nor z, as just observed),
and is hence in the interior of I. It is also a local maximum for f because it is a maximum
of f restricted to [x, z]. This contradicts the assumption that f has no local maxima, and we
are done. �

For the next two problems I need

Definition 3. A real-valued function f : I → R is strictly increasing if for x < y in I we have
f(x) < f(y).
f is strictly decreasing if

x < y ⇒ f(x) > f(y).

f is strictly monotonic if it is either strictly increasing or strictly decreasing. �

E2. Show that if f : I → R is continuous and one-to-one then it is strictly monotonic.

Solution. As for E1, we prove this by contradiction, assuming f is continuous, one-to-one,
and not strictly monotonic.

I will use a version of Lemma 2 adapted to the strictly monotonic case, saying that if f is
not strictly monotonic then there are x < y < z ∈ I such that one of (5) and (6) holds with
non-strict inequality signs (I’ll leave this version of Lemma 2 as an exercise). The injectivity
of f , however, ensures that the signs are strict.

In conclusion, if the one-to-one function f is not strictly monotonic, then there are x <
y < z in I satisfying either (5) or (6). And as in the proof of E1 we assume (5) holds, the
other case being analogous.

For sufficiently small ε > 0 the number f(y) − ε is contained in both (f(x), f(y)) and
(f(z), f(y)). But then, Theorem 4.23 ensures that there are points

t1 ∈ (x, y), t2 ∈ (y, z)
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such that f(t1) = f(t2) = f(y) − ε. This contradicts the injectivity of f and finishes the
proof. �

E3. Let f : I → R be a strictly increasing function. Show that if the image of f is (a)
connected or (b) closed then f is continuous.

Solution. Suppose f is not continuous. According to Theorem 4.29, this means that there
is some simple discontinuity x ∈ I. We need to derive a contradiction from this.

Now, either x is one of the endpoints a, b of I = [a, b] or x is in the interior (a, b). I will
just treat the latter case; x = a or x = b are similar (see Remark 4 below).

We know that x ∈ (a, b) is a simple discontinuity, so f(x−) and f(x+) both exist, but
f(x−) < f(x+) (otherwise they’d be equal to f(x), since by Theorem 4.29 this number is
between f(x−) and f(x+)).

Now suppose we’re in case (a) of the problem, meaning that the image f(I) is connected.
Then, according to Theorem 2.47, every number between f(a) and f(b) is contained in f(I).
Theorem 4.29, however, says in our case that

sup
a≤t<x

f(t) = f(x−) < f(x+) = inf
x<t≤b

f(t), (7)

so the interval (f(x−), f(x+)) is not contained in f(I) except perhaps for the single point
f(x); this is a contradiction, and we’re done.

Assume now that we are in case (b) and know that f(I) is closed. By (7) both f(x−) and
f(x+) are contained in f(I) (because the supremum of a set that is bounded above is in the
closure of that set, and similarly for the infimum of a set bounded below; see Theorem 2.28).

(7) shows that f(x+) is strictly less than all f(t), x < t ≤ b and strictly greater than all
f(t), a ≤ t < x. The only possibility then is that f(x+) = f(x). Similarly, f(x−) = f(x),
which means that

f(x−) = f(x) = f(x+)

and contradicts our assumption that f is not continuous at x. �

Remark 4. The case x = a of Problem E3 is treated similarly, but is easier; here, only f(x+)
makes sense (there are no t < x in I = [a, b]), and the discontinuity assumption means that
f(x) < f(x+).

Similarly, in the case x = b only f(x−) makes sense and the assumption is f(x−) < f(x).
I will leave these as exercises; the arguments are analogous to the one for x ∈ (a, b) presented
here. �

E4. Suppose the function f : I → R has the following property:
Each x ∈ I has a neighborhood Nr(x)(x) in I on which f is increasing.
Show that f is increasing.

Here’s a bit of a discussion regarding this last problem.
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My notation Nr(x)(x) is meant to indicate that the radius r(x) of the neighborhood might
depend on x (so for some points x you know f to be increasing only on tiny neighborhoods
around x).

You have to show that for any two x1 < x2 ∈ I you have f(x1) ≤ f(x2). Now, as x
ranges over the closed interval [x1, x2], the neighborhoods N r(x)

2

(x) form an open cover of

that interval. Try to see what happens after you extract a finite subcover from it.

Solution. As the hint suggests, fix two arbitrary points x1 < x2 in I and cover the interval
J = [x1, x2] with the neighborhoods

N r(x)
2

(x) = I ∩
(
x− r(x)

2
, x+

r(x)

2

)
for x ∈ J . As J is compact, we can extract from this a finite subcover. That means that
there are finitely many points y1 up to yn in J such that Ni = N yi

2
(yi) cover J for 1 ≤ i ≤ n.

Assume we’ve indexed the yi so that y1 < y2 < · · · < yn (if not you can always just reindex
them). The condition that Ni cover J ensures that x1 ∈ N1, so f(x1) ≤ f(y1) because the
restriction of f to N1 is increasing.

Similarly, at the other end, we have f(yn) ≤ f(x2).
As for what happens in between, for every 1 ≤ i ≤ n − 1 the neighborhoods Ni and Ni+1

intersect at some point y, and since the restriction of f to both Ni and Ni+1 is increasing we
have

f(yi) ≤ f(y) ≤ f(yi+1).

All in all we have
f(x1) ≤ f(y1) ≤ f(y2) ≤ · · · ≤ f(yn) ≤ f(x2).

Since x1 < x2 were chosen arbitrarily, this finishes the proof. �


