
Math 424 B / 574 B Due Wednesday, Nov 18
Autumn 2015

Solutions for Homework 6

Solution for Problem 5, page 78. For convenience, throughout this proof I will use the
phrase ’subsequential limit’ to also possibly refer to ±∞ if some subsequence of the sequence
under consideration goes to ±∞ in the sense of Definition 3.15 from your textbook.

We break up the problem into several cases.
Case 1: lim an =∞ or lim bn =∞.
Then, the conclusion is immediate: by assumption lim an + lim bn makes sense as addition

in the extended real number line, so it must be ∞ (the arithmetic rules for adding extended
real numbers are reviewed on page 12 of our textbook). But then the inequality

lim(an + bn) ≤ lim an + lim bn =∞

is clear.
Case 2: lim an and lim bn are both <∞, but at least one is −∞. Assume without

loss of generality that lim an = −∞ (if the other one is −∞ we can just change labels,
interchanging as and bs).

Now, we are assuming lim bn < ∞, so the sequence (bn)n is bounded above, say bn ≤ M
for some real number M . Since lim an = −∞, we have an → −∞. But then bn ≤M implies
an + bn → −∞, and so lim(an + bn) = −∞. This means that once more we get

−∞ = lim(an + bn) ≤ lim an + lim bn.

Case 3: lim an and lim bn are both real numbers. In particular, the sequences (an)n
and (bn)n are bounded.

Denote a∗ = lim an and similarly, b∗ = lim bn. By definition, lim(an+ bn) is the supremum
of the set of subsequential limits of the sequence (an+bn)n. If we show that every subsequential
limit of (an + bn)n is less than or equal to a∗ + b∗ we will be done, for then a∗ + b∗ will be
an upper bound for the set of subsequential limits of (an + bn)n, whereas lim(an + bn) is the
least upper bound.

So we are left having to prove that if the subsequence (ank
+ bnk

)k converges to L, then
L ≤ a∗ + b∗.

Since (ank
)k and (bnk

)k are bounded by assumption, we can extract from them two con-

vergent subsequences
(
ank`

)
`

and
(
bnk`

)
`

respectively by Theorem 3.6 (b). Denoting

a = lim
`

ank`
and b = lim

`
bnk`

,

we have on the one hand a+b = L, and on the other hand a ≤ a∗ and b ≤ b∗ (because a∗ is an
upper bound for the set of subsequential limits of (an)n, and similarly for b). In conclusion,
we get

L = a+ b ≤ a∗ + b∗,

as desired.
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To show that the inequality

lim(an + bn) ≤ lim an + lim bn (1)

can be strict, take an = (−1)n and bn = (−1)n+1. In other words, an and bn both alternate
between 1 and −1, but they’re always opposite in sign. We have an + bn = 0 for all n, so the
left hand side of (1) is 0. On the other hand, both terms of the right hand side of (1) are
equal to 1, so the whole right hand side is 2 > 0. �

Solution for Problem 21, page 82. Since En are non-empty, we can find points xn ∈ En.
I claim first that the sequence xn converges to some x ∈

⋂
nEn.

To see this, let us first observe that the sequence (xn)n is Cauchy. Indeed, for any ε > 0
there is some N such that diam En < ε for all n ≥ N . But then, since xn ∈ En, we get

d(xn, xm) < ε, ∀n,m ≥ N,
which means that (xn)n meets the requirements for being Cauchy. Now, since we are in a
complete metric space, Cauchy implies convergent, so that xn → x for some x.

This just shows that (xn)n is convergent. To see that the limit x is in
⋂
nEn, note that for

any positive integer N the terms xn, n ≥ N of our sequence are all contained in the closed
set EN . Since x is also the limit of the sequence (xn)n≥N (because dropping a finite number
of terms of a sequence does not alter the limit), x must be contained in EN . This is true for
arbitrary N , so indeed x ∈

⋂
nEn.

The above discussion shows that
⋂
nEn is non-empty (because it contains a point x con-

structed as above). Now, to see that the intersection contains exactly one point, suppose
that’s not the case. This means we can find x 6= y ∈

⋂
nEn. Now, for sufficiently large n, we

have diam En < d(x, y), contradicting x, y ∈ En. The contradiction negates the existence of
x 6= y ∈

⋂
nEn, so we’re done. �

Solution for Problem 22, page 82. We will follow the hint and construct a shrinking se-
quence of neighborhoods En as suggested in the text of the problem.

The construction is recursive. In the first step, choose E1 to be some neighborhood E1 =
Nδ1(x1) for some x1 ∈ G1 (this is possible because G1 is open, so some neighborhood of an
arbitrary point x1 ∈ G1 will be contained in it). Shrinking δ1 if necessary, we can ensure that

E1 = {y ∈ X : d(x1, y) ≤ δ1}
is contained in G1.

For our second step, note that G2∩E1 is non-empty because G2 is dense as well as open by
Theorem 2.24 (c), so we can find some point x2 ∈ G2 ∩E1 and a neighborhood E2 = Nδ2(x2)

contained in G2 ∩ E1. Moreover, shrinking δ2 if necessary, we can ensure that δ2 <
δ1
2 and

that E2 ⊂ G2 ∩ E1.
Now continue as above. In step k ≥ 3, assuming we’ve chosen sets Ej for 1 ≤ j ≤ k − 1,

select some point
xk ∈ Gk ∩ Ek−1

and a neighborhood Ek = Nδk(xk) so that Ek is contained in Gk ∩ Ek−1, and δk <
δk−1
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This last inequality ensures that δk → 0 as k →∞. Since the diameter of Ek = Nδk(xk) is
at most 2δk, we get

diam Ek → 0.

Applying Problem 21 to the sets Ek we get a point x contained in their intersection, and since
Ek ⊂ Gk we get x ∈

⋂
kGk.

Moreover, you can do everything above inside an arbitrary non-empty open subset U of
X to conclude that

⋂
kGk contains points in U , and hence the intersection is dense in X (as

claimed in passing in the statement of the problem). �

Solution for Problem 2, page 98. We need to show that f maps E into f(E), or equiva-
lently, that

E ⊆ f−1
(
f(E)

)
. (2)

Now, f(E) is closed in Y , so the right hand side of (2) is closed in X by the corollary to

Theorem 4.8. On the other hand we have f(E) ⊆ f(E), so

E ⊆ f−1(f(E)) ⊆ f−1
(
f(E)

)
.

In conclusion, the right hand side of (2) is a closed subset of X which contains E. Since E is
the smallest closed subset of X containing E (Theorem 2.27 (c)), (2) follows.

To show that the inclusion can be proper, consider the function f : (0, 1)→ R defined by

f(x) =
1

x
,

where both (0, 1) and R are equipped with the usual metric.
Take E to be all of (0, 1), so that E = E and

f(E) = f(X) = (1,∞) ⊂ R.

The closure f(E) is then [1,∞), but the point 1 ∈ f(E) is not in the image of E = E. �

Solution for Problem 3, page 98. By definition, for f : X → R the zero set Z(f) of f is
the preimage f−1({0}) of the subset {0} ⊂ R.

Since the singleton {0} ⊂ R is clearly closed (Example 2.21 (c)), its preimage through the
continuous function f is closed in X by the corollary to Theorem 4.8. �

Solution for Problem 4, page 98. We first prove the claim that f(E) is dense in f(X).
By the definition of density, this means that we want

f(X) ⊆ f(E), (3)
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where the closure on the right hand side is taken inside Y . Now, since E is dense in X, we
have X = E, so the left hand side of (3). Hence, by Problem 2 we have

f(X) = f
(
E
)
⊆ f(E).

We now prove the second claim, that f = g provided f(p) = g(p) for p ∈ E.
Choose some arbitrary q ∈ X, with the goal of proving that f(q) = g(q). Fix some ε > 0.

Since f and g are continuous, there is some δ > 0 such that

d(f(p), f(q)) <
ε

2
and d(g(p), g(q)) <

ε

2
whenever d(p, q) < δ. (4)

Now, since E is dense in X, we can find p ∈ E with d(p, q) < δ. Then, by (4) and the triangle
inequality we have

d(f(q), g(q)) ≤ d(f(q), f(p)) + d(f(p), g(p)) + d(g(p), g(q)).

The middle term on the right hand side is zero because f(p) = g(p) by assumption (since p ∈
E), while the other two terms are both less than ε

2 by (4). All in all, we get d(f(q), g(q)) < ε.
As this is true for any ε > 0, we have f(q) = g(q) as desired. �

E1. Let f : X → Y be a map between metric spaces such that for all subsets E ⊆ X we
have

f
(
E
)
⊆ f(E).

Show that f is continuous.

Solution. According to the corollary to Theorem 4.8, I have to show that for every closed
subset C ⊆ Y the preimage f−1(C) is closed.

Fix a closed subset C ⊆ Y , and set E = f−1(C) ⊆ X. The task now is to prove that E is
closed, or in other words, that E is contained in E (the other inclusion E ⊆ E being true by
the definition of E).

Now, by our definition of E, showing that

E ⊆ E = f−1(C)

simply means showing that f
(
E
)

is contained in C. Now, by assumption we have

f
(
E
)
⊆ f(E). (5)

Since f(E) ⊆ C and C is closed, we further have

f(E) ⊆ C
by Theorem 2.27 (c). This, together with (5) gives the desired conclusion f

(
E
)
⊆ C. �


