
Math 424 B / 574 B Due Wednesday, Nov 04
Autumn 2015

Solutions for Homework 4

None of the problems are taken directly from the book, but the first two are variants of 19
and 20 respectively from the end of Chapter 2.

For the first problem, I need the following definition.

Definition 1. Let (X, d) be a metric space, and A ⊆ E ⊆ X subsets. We say that A is
relatively closed in E (or just closed in E) if it is a closed subset of E when I regard the latter
as a metric space in its own right with respect to the metric d inherited from X. �

Remark 2. It can be shown that A is relatively closed in E if and only if it is of the form
E ∩ F , where F ⊆ X is closed. You can use this below. �

1. Let A and B be two disjoint and non-empty subsets of a metric space X, E ⊆ X another
subset, and assume E = A ∪B. Prove that the following statements are equivalent.

• A and B are separated;
• A and B are both relatively closed in E;
• A and B are both relatively open in E.

Solution. We will cycle through the three conditions, proving three implications that go
around in a circle. I will use the following characterization of relatively open / closed sets:
A is relatively closed (open) in E if and only if it is of the form E ∩ S, where S is a closed
(respectively open) subset of X.

This is Theorem 2.30 for the open case, whereas the proof for the closed case is very similar
(see also Remark 2).

First • implies second • According to Definition 2.45, separatedness means

A ∩B = A ∩B = ∅.
Now, we have B ⊆ B, so B ⊆ E ∩B. Because B does not intersect A though, we also have

E ∩B ⊆ E \A = B.

All in all we get B = E ∩B. This is the intersection of E with a closed set, so it’s relatively
closed. Similarly, A is relatively closed in E (simply interchange the roles of A and B).

Second • implies third • Since B is relatively closed, it is of the form E ∩ F for some
closed subset F ⊆ X. But then we have

A = E \B = E \ (E ∩ F ) = E ∩ F c.



2

The complement F c is open because F is closed (Theorem 2.23), so that A is relatively open
in E by Theorem 2.30.

Again, interchanging the roles of A and B in the argument above shows that B is also
relatively open.

Third • implies first • We are now assuming that A is relatively open in E. Fix some
arbitrary point a ∈ A. Relative openness in E means that for some r > 0 the intersection
Nr(a) ∩ E is contained in A = E \ B. But this then implies that Nr(a) cannot contain any
points from B, and hence a 6∈ B.

Since a ∈ A was arbitrary, the above paragraph shows that A ∩ B = ∅. Once more,
interchanging the roles of A and B proves the other condition A ∩B = ∅. �

What you’ve just proven is the following alternate definition of connectedness; this is the
one that’s more commonly used in practice.

Definition 3. A metric space is connected if it cannot be written as the union of two disjoint,
non-empty closed (or open) subsets. �

2. Suppose A is a connected subset of a metric space.

(a) Show that the closure A is also connected.
(b) Show by example that the interior A◦ need not be connected.

Hint for part (b): Try to come up with two subsets of R2 that just barely touch each other
and such that both have non-empty interiors.

Solution. (a) We will prove this by contradiction. Suppose A is not connected. Then, by
Definition 3, I can write it as a disjoint union

A = B ∪ C
of two non-empty relatively closed subsets B and C. Relatively closed subsets of A are of
the form A ∩ E for some closed E ⊆ X (this is the analogue of Theorem 2.30, with ’closed’
instead of ’open’). A itself is closed and intersections of closed sets are closed (by part (b) of
Theorem 2.24), so that both B and C must be closed.

Now, A is the disjoint union of the two relatively closed subsets A ∩ B and A ∩ C. Since
A is connected, Definition 3 ensures that one of these two sets must be empty. Without loss
of generality, let’s say A ∩ C = ∅. But this, together with

A = (A ∩B) ∪ (A ∩ C),

implies A ⊆ B. Since B is closed, part (c) of Theorem 2.27 shows that A ⊆ B; this contradicts
our assumption that C = A \B is non-empty.

(b) My ambient metric space will be R2 with the usual metric coming from the identification
R2 ∼= C. The set A will be

{p ∈ R2 : d(p, 0) ≤ 1 or d(p, 2) ≤ 1}.
In other words, A is the union of the two closed disks of radius 1 centered at the points 0
and 2. These disks just barely touch at 1, as the hint suggests. Because each of the disks
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is connected and their intersection is non-empty (as they intersect at 1), their union A is
connected by Problem 3 below.

The interior of A is the union

{p ∈ R2 : d(p, 0) < 1 or d(p, 2) < 1}.

of the two open disks centered at the same two points 0 and 2. These disks do not intersect,
so the interior is the disjoint union of two non-empty open subsets. This violates Definition 3
above, so that A◦ is not connected. �

3. Let {Ai}i∈I be a family of connected subsets of a metric space X (where I is just some
set of indices; it need not be finite or countable).

Show that if the intersection
⋂

iAi is non-empty, then the union
⋃

iAi is connected.

Solution. Denote the union
⋃

iAi by A. According to Definition 3 above, we have to show
that if A is the union of two disjoint relatively open subsets A ∩ U and A ∩ V (where U and
V are open subsets of X), then one of these two sets must be empty.

Now, our assumption that

A = (A ∩ U) ∪ (A ∩ V )

implies that we similarly have

Ai = (Ai ∩ U) ∪ (Ai ∩ V )

for each i. The relatively open subsets Ai ∩ U and Ai ∩ V of Ai are disjoint (because the
larger sets A ∩ U and A ∩ V are), so the connectedness of Ai ensures, by Definition 3, that
one of Ai ∩ U and Ai ∩ V must be empty.

So far, we’ve determined that for each i, either Ai ∩ U or Ai ∩ V is empty. Which one
is empty might depend on i though. To get around this issue, suppose Aj ∩ U = ∅ and
Ak ∩ V = ∅ for some j 6= k ∈ I. We then have(⋂

i

Ai ∩ U

)
∪

(⋂
i

Ai ∩ V

)
⊆ (Aj ∩ U) ∪ (Ak ∩ V ) = ∅.

The left hand side of this expression, however, is all of
⋂

iAi (because U and V cover all of A by
assumption), and our hypothesis says that this intersection is non-empty. The contradiction
means that we cannot have Aj ∩ U and Ak ∩ V empty for j 6= k, and the conclusion is that
either Ai ∩ U is empty for all i ∈ I, or similarly, Ai ∩ V is empty for all i.

But then we have either

A ∩ U =
⋃
i

(Ai ∩ U) = ∅

or similarly A ∩ V = ∅. This was our goal (see the first paragraph of the solution), so we are
done. �

In particular, this problem shows that the union of all connected subsets of X containing
a given point x ∈ X is again connected. In other words, there’s a largest connected subset of
X containing x. This validates the following definition.
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Definition 4. For x ∈ X the connected component of x is the largest connected subset of X
containing x. �

Note that by part (a) of Problem 2 the connected component of any point of X is a closed
subset of X.

For the next problem I’ll need the following notion.

Definition 5. Let A ⊆ X be a subset of a metric space X. The boundary ∂A of A is the
intersection

A ∩Ac.

Equivalently, it is the set of points in X whose neighborhoods contain points from both A
and the complement Ac = X \A. �

4. Show that a metric space X is connected if and only if for every non-empty proper
subset A ⊂ X the boundary ∂A is non-empty (proper means A is not all of X).

Solution. (⇒) We prove this implication by contradiction. Suppose that X is connected,
and let A ⊂ X be a proper non-empty subset with ∂A = ∅. A is non-empty, so the closed set
A ⊇ A is also non-empty. Similarly, because A is proper, the complement Ac is non-empty
and so is the closure Ac. We have

X = A ∪Ac ⊆ A ∪Ac ⊆ X,

so X is the union of the two closed sets A and Ac. We are furthermore assuming that these
sets do not intersect (this is what ∂A = ∅ means), so we have exhibited X as a disjoint union
of two non-empty closed subsets. This violates Definition 3, contradicting connectedness.

(⇐) I will prove the contrapositive of this implication. Suppose X is not connected. Then,
according to Definition 3, I can write it as a disjoint union A∪B of non-empty closed subsets.
But then B = Ac is closed and hence equal to its own closure (and similarly A = A), and we
have

∂A = A ∩Ac = A ∩Ac = ∅.
Since A was proper (because B = Ac 6= ∅) and non-empty, this negates the property in the
statement of the problem (that non-empty proper subsets of X have non-empty boundaries).
This concludes the proof. �

5. Define

xn =

(
1 +

1

n

)
sin

nπ

2
.

Find

(a) All the limits of convergent subsequences of the sequence (xn);
(b) All the limit points of the set {xn : n = 1, 2, · · · }.
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Solution. (a) The behavior of xn changes depending on the remainder of n upon division
by 4.

First, if n is even, then sin
nπ

2
is zero, and so xn = 0 for those values of n. In conclusion,

we have a subsequence

yk = x2k, k = 1, 2, · · ·
that is constantly zero and so converges to 0.

Secondly, if n is of the form 4k + 1 for k ≥ 0 (that is, n = 1, 5, 9, · · · ) then sin
nπ

2
equals 1

and we have xn = 1 + 1
n . We thus have a subsequence

zk = x4k+1 = 1 +
1

4k + 1
, k = 0, 1, · · ·

which converges to 1 as k →∞.

Finally, if n is of the form 4k+ 3 (i.e. n = 3, 7, 11, · · · ) then sin
nπ

2
equals −1 and we have

xn = −
(
1 + 1

n

)
. We thus have a subsequence

wk = x4k+3 = −
(

1 +
1

4k + 3

)
, k = 0, 1, · · ·

which converges to −1 as k →∞.
So the limits the problem asks for are 0 and ±1.
(b) As observed above in part (a), the set {xn} consists of the numbers 1 + 1

4k+1 for k ≥ 0,

the numbers −
(

1 + 1
4k+3

)
for k ≥ 0, and 0 (the common value of all xn when n is even).

The only limit point of the first set{
1 +

1

4k + 1
: k = 0, 1, · · ·

}
is 1, and similarly, the only limit point of{

−
(

1 +
1

4k + 3

)
: k = 0, 1, · · ·

}
is −1. The point 0 is isolated (i.e. it has a neighborhood, say (−1, 1), that contains no other
points of {xn}), and so contributes nothing to the limit points.

In conclusion, the only limit points are ±1. �

6. Let (X, d) be a metric space.

(a) Show that for all x, y, p, q ∈ X we have

|d(x, y)− d(p, q)| ≤ d(x, p) + d(y, q).

(b) Conclude that if xn → x and yn → y in X, then d(xn, yn)→ d(x, y).

Solution. (a) Applying the triangle inequality twice, we get

d(x, y) ≤ d(x, p) + d(p, y) ≤ d(x, p) + d(p, q) + d(y, q).

Moving d(p, q) to the left, this implies

d(x, y)− d(p, q) ≤ d(x, p) + d(y, q). (1)
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Now interchange the roles of x and p, and also the roles of y and q. Applying the triangle
inequality twice, as above, we get

d(p, q) ≤ d(x, p) + d(x, q) ≤ d(x, p) + d(x, y) + d(y, q).

Moving d(x, y) to the left yields

d(p, q)− d(x, y) ≤ d(x, p) + d(y, q). (2)

(1) and (2) together show that the absolute value of the number d(x, y)−d(p, q) is dominated
by the right hand side of both equations, as desired.

(b) Let ε > 0 be an arbitrary positive number. By the definition of convergence, there is
some N such that d(xn, x) and d(yn, y) are both less than ε

2 for n ≥ N . But then, applying
part (a) with p = xn and q = yn, we get

|d(xn, yn)− d(x, y)| ≤ d(x, xn) + d(y, yn) <
ε

2
+
ε

2
= ε.

for all n ≥ N . This means that the sequence (d(xn, yn))n does indeed converge to the number
d(x, y). �


