
Math 424 B / 574 B Due Wednesday, Oct 21
Autumn 2015

Solutions for Homework 3

Solution for Problem 6, page 43. Let’s break it up according to the different tasks.

Part (1): E′ is closed. I have to show that E′ contains its limit points.

Let x ∈ E′′
be a limit point of E′ (the double-prime notation means (E′)′, i.e. the set of

limit points of the set of limit points of E; the repetition is not a typo!). Let Nr(x) be an
arbitrary neighborhood of x. By the definition of a limit point, Nr(x) contains some point
y ∈ E′ that is different from x.

Now choose s > 0 so small that Ns(y) ⊂ Nr(x) and x 6∈ Ns(y). For instance, you could
take

s < min(d(x, y), r − d(x, y)).

The inequality s < d(x, y) ensures that x 6∈ Ns(y), while the inequality s < r− d(x, y) means
that for every y′ ∈ Ns(y) we have

d(x, y′) ≤ d(x, y) + d(y, y′) < d(x, y) + s < r,

so that y′ ∈ Nr(x). Or in other words, Ns(y) ⊂ Nr(x), as desired.
Now, y itself was in E′ (I chose it so), which means that Ns(y) contains some point z ∈ E

different from y. But now we have

E 3 z ∈ Ns(y) ⊂ Nr(x),

and z 6= x because z is in Ns(y), which doesn’t contain x.
In conclusion, we have found, in the arbitrary neighborhood Nr(x) of x, a point z ∈ E that

is different from x. This means that x ∈ E′. But since x was an arbitrary point of E′′, we
get the desired inclusion E′′ ⊆ E′.

Part (2): E and E have the same limit points. It is clear from the definition of a
limit point that if E ⊆ F , then E′ ⊆ F ′. In other words, the operation E 7→ E′ respects
inclusions.
E = E ∪ E′ contains E, so by the above observation we have E′ ⊆

(
E
)′

.

We now need the opposite inclusion
(
E
)′ ⊆ E′. Let x ∈

(
E
)′

be an arbitrary point, and
let Nr(x) be an arbitrary neighborhood for it. I have to find a point z ∈ E, different from x,
in Nr(x) .

Since x is a limit point of E, I can find some element y ∈ E = E ∪ E′ in Nr(x) that is
distinct from x. We now have y ∈ E or y ∈ E′.

If y ∈ E, just take z = y.
If y ∈ E′, find z ∈ E using the same argument as in Part (1).
This concludes the proof of Part (2).
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Part (3): Do E and E′ always have the same limit points? No: just take

E =

{
1

n
: n > 0

}
.

As you’ve seen before (in Example 2.21 (e) and on previous homework) the set E′ of limit
points here is just {0}. But then E′ has no limit points of its own (finite sets have no limit
points, for example by Theorem 2.20). So we have

E′′ = ∅ 6= {0} = E′,

and we have our example. �

Solution for Problem 7, page 43. Let me start with a general inclusion B ⊇ A of subsets
of a metric space. Then, I claim I get the analogous inclusion B ⊇ A.

To see this, note first that we have

B ⊇ B ⊇ A,

so that B is a closed set containing A. But according to Theorem 2.27 the closure A is the
smallest closed subset containing A, so I get my desired inclusion

B ⊇ A.

Part (b). Now let’s specialize to the setup of the problem. Since all Ai are contained in
their union B, I get B ⊇ Ai for all i and hence the inclusion

B ⊇
⋃
i

Ai.

from part (b).
Part (a). The same argument as in Part (b) above proves the inclusion

Bn ⊇
⋃
i≤n

Ai (1)

This time around though we want the opposite inclusion as well.
To get that, note first that we have

Bn =
⋃
i≤n

Ai ⊆
⋃
i≤n

Ai.

The rightmost set in this display is a finite union of closed sets, and hence closed by part (d)
of Theorem 2.24. But again by Theorem 2.27, Bn is the smallest closed set containing Bn,
and hence indeed

Bn ⊆
⋃
i≤n

Ai.

Together with the opposite inclusion (1) this proves the equality required in part (a).
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A counterexample. Finally, we have to give an example where the inclusion in part (b)
is strict. For that, just take for instance Ai =

{
1
i

}
for i > 0. Each Ai is closed, so⋃

i

Ai =
⋃
i

Ai =

{
1

i
: i > 0

}
. (2)

On the other hand, 0, which does not belong to (2), is a limit point of the union

B =
⋃
i

Ai.

This means that it does B, so the latter set is strictly larger than (2). �

Solution for Problem 9, page 43. We do these in one by one.

(a) Running through the definitions of interior and openness, I have to show that if x ∈ E◦,
then an entire neighborhood Nr(x) of x consists of interior points of E.

Let us note first that if a set A is open, then by definition A◦ = A. Applying this to the
set A = Nr(x) (which is open by Theorem 2.19), we get

Nr(x)◦ = Nr(x). (3)

A second observation is that if x ∈ A◦ and A ⊆ B, then x is also an interior point of B.
This means that A◦ ⊆ B◦, i.e. the operation A 7→ A◦ preserves inclusions. Now apply this to
A = Nr(x) and B = E. Using (3) we get

Nr(x) = Nr(x)◦ ⊆ E◦.
This is exactly what we wanted: some neighborhood of x is contained in E◦.

(b) We already noted in the proof of part (a) above that if E is open then E◦ as an
immediate consequence of the definitions.

On the other hand, since E◦ is open by part (a), E = E◦ implies that E is open. So the
two conditions ‘E is open’ and ‘E = E◦’ are indeed equivalent.

(c) Let G ⊆ E be an open set.
We noted above, in the proof of part (a), that the inclusion G ⊆ E implies G◦ ⊆ E◦. On

the other hand, the openness of G also implies (as noted in the same proof) that G◦ = G. So
all in all we get

G = G◦ ⊆ E◦.

(d) An element x of the ambient metric space X is in the complement (E◦)c if and only if
it is not an interior point of E. Running through the definition of interior points, this means
that for every r > 0 the neighborhood Nr(x) contains elements of Ec.

This last condition is equivalent to saying that either x ∈ Ec, or if not, every neighborhood
Nr(x) contains elements of Ec that are necessarily different from x (because we are in the
case x 6∈ Ec). In other words, x ∈ Ec or x is a limit point of Ec.

In conclusion,
x ∈ (E◦)c ⇔ x ∈ Ec ∪ (Ec)′ = Ec.
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This is what we were asked to prove.

(e) An example where E has empty interior but E does not would show that E and E do
not always have the same interior.

Take E to be, say, the set R \ Q of irrational numbers, sitting inside the ambient metric
space R (with the usual metric).

First, the set E is dense in R, so that E = R. The density claim amounts to saying that
every non-empty open interval in R contains irrational numbers; of course it does, since we
know that every such interval is uncountable (well, we know this for R, but the same proof
works), so it can’t possibly be that the interval consists of rational numbers alone.

In conclusion, E = R which is open (as a subset of itself), so that the interior of E is all of
R.

On the other hand, the interior of E itself is empty: indeed, by part (b) of Theorem 1.20
every non-empty open interval in R contains rational numbers, so it can’t be included in
E = R \Q.

We now have

E◦ = ∅ 6= R =
(
E
)◦
.

(f) That E and E◦ do not always have the same closures will certainly follow if I come up
with an example where E is non-empty but E◦ is (because then the closure of E◦ would also
be empty, while that of E wouldn’t).

One simple example of this is, say, E = {0} in R. It’s certainly non-empty, but its interior
is empty (otherwise it would have to be E itself, but E is not open). �

Solution for Problem 12, page 44. I need to show that for any open cover K ⊂
⋃
αGα I

can extract a finite subcover. In other words, I can cover

K =

{
1

n
: n > 0

}
∪ {0}

with only finitely many of the Gα.
The element 0 is in K and the Gα collectively cover K, so for sure some Gα0 contains 0. But

Gα0 is open, so by the definition of openness there is a neighborhood Nr(0) = (−r, r) ⊂ Gα0

of 0.
Now, for sufficiently large n (for instance for n > 1

r ) the elements 1
n of K are all inside

Nr(0) and hence inside Gα0 .
In other words, most of the elements of K (i.e. 1

n for sufficiently large n along with 0) are

contained in this single open set Gα0 . There are only finitely many 1
n left over that are maybe

not in Gα0 , and we can cover those with finitely many other Gαs.
So all in all, we have used only finitely many Gα to cover K. �

Solution for Problem 15, page 44. To give closed but unbounded counterexamples to the
corollary to Theorem 2.36, take Kn = [n,∞). Clearly, this is an unbounded set. It’s closed
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because it is the complement of the set (−∞, n), and this latter set is open by part (a)
of Theorem 2.24 because it is the union of the neighborhoods (m,n) as m ranges over the
integers going off to −∞.

We also have Kn ⊃ Kn+1, as the corollary requests, but the intersection
⋂
nKn is empty.

Indeed, it consists of real numbers y such that y > n for all positive integers n. This
contradicts party (a) of Theorem 1.20 (applied to x = 1).

On the other hand, for a counterexample to the corollary consisting of sets that are bounded
but not closed, take Kn =

(
0, 1n

)
.

Clearly, the Kns are bounded and nested, in the sense that Kn ⊃ Kn+1, just as the corollary
demands. Their intersection, however, consists of positive real numbers x that are smaller
than 1

n for all n. This is the same as

0 < nx < 1, ∀n > 0,

which for example contradicts part (a) of Theorem 1.20 (with y = 1). So there are no such
numbers x, and the intersection is empty.

�

Solution for Problem 23, page 45. We will follow the hint in the book.
Let X be a separable metric space, and {xn : n = 1, 2, · · · } a dense countable subset of

X. Now, for each positive rational number r > 0 and each positive integer n, define

Gn,r = Nr(xn).

In other words, this is the neighborhood of rational radius r centered at xn. These are going
to be our sets Gα requested by the problem: the indices α are the pairs (n, r) consisting of
a positive integer n and a positive rational r. My task is now to show that they make up a
countable base.

First, note that {Gn,r} is indeed a countable family of open sets, because the set of pairs
(n, r) as above is a(n infinite) subset of the set of all pairs of rational numbers, which is
countable for instance by Theorem 2.13.

We are left having to show that the sets Gn,r form a base, as defined in the statement of
the problem. In other words, I have to show that for every x ∈ X and every open set G 3 x
I can find some (n, r) such that

x ∈ Gn,r ⊂ G. (4)

Now, G is open and it contains x, so by the definition of openness there is some neighborhood
Ns(x) of x that’s contained in G.

Now let 0 < r < s
2 be a positive rational number (one exists by part (b) of Theorem 1.20).

Since {xn} is dense in x, there are elements of that set as close to x as I want. In particular,
there is some n such that d(x, xn) < r.

I now claim that Gn,r = Nr(xn) for the n and r from the previous paragraph satisfies (4).
I have to show two things:

First, x ∈ Gn,r because the distance from x to the center xn of the neighborhood Gn,r is
less than r (by my choice of xn).

Next, we want to prove that Gn,r is contained in G. We will show that it is in fact contained
in Ns(x) ⊂ G.
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To see this, let y ∈ Gn,r = Nr(xn). This means that d(y, xn) < r, and hence

d(y, x) ≤ d(y, xn) + d(x, xn) < 2r, (5)

where the first inequality is the triangle inequality for the distance function d and the second
inequality is due to the fact that both summands are smaller than r.

On the other hand, we chose r so that it is less than s
2 , and hence the rightmost term of (5)

is less than s. But this means that an arbitrary y ∈ Gn,r is contained in Ns(x), as desired. �


