Homework 2

Problems 2, 5 from the end of Chapter 2, plus the following (I’ll name them E+number, for ‘extra’).

First, I’ll need the following definition to complement Definition 2.9 from your textbook.

Definition 1. Let A and B be two sets. The *set difference* $A \setminus B$ (sometimes also denoted by $A - B$) is

$$\{a \in A : a \notin B\}.$$

In other words, it is the set of elements of A that are not elements of B. ♦

E1. Prove that for any two sets A and B we have

$$(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A).$$

The set (1) is also known as the *symmetric difference* of the sets A and B, and it’s sometimes denoted by $A \Delta B$.

E2. Let $f : X \to Y$ be a function between two sets. Show that for subsets $A, B \subseteq Y$ we have

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

and

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$$

E3. Let $f : X \to Y$ be a map from X to Y

(a) Show that for subsets $C, D \subseteq X$ we have $f(C \cup D) = f(C) \cup f(D)$.

(b) For C and D as before, show that we also have $f(C \cap D) \subseteq f(C) \cap f(D)$.

(c) Take $X = Y = \mathbb{R}$ and $f(x) = x^2$. Find two subsets C and D of \mathbb{R} such that $f(C \cap D) \neq f(C) \cap f(D)$.

(d) Going back to the general case of an arbitrary map $f : X \to Y$, show that the statement

$$f(C \cap D) = f(C) \cap f(D)$$

for all possible choices of $C, D \subseteq X$ is equivalent to f being one-to-one.