
Math 424 B / 574 B Due Wednesday, Oct 07
Autumn 2015

Selected solutions for Homework 1

Solution for Problem 5, page 22. I need to show that if A is a non-empty bounded-below
set of real numbers, then

inf A = − sup(−A),

where −A is the set of all −x for x ∈ A.
Let x = inf A and y = sup(−A). Since y is an upper bound for −A, we have

y ≥ −a⇒ −y ≤ a, ∀a ∈ A,
so −y is a lower bound for A. But x is the greatest lower bound for A, so we get

− y ≤ x. (1)

On the other hand, x is a lower bound for A, so

x ≤ a⇒ −x ≥ −a∀a ∈ A,
which means that −x is an upper bound for −A. But y is the least upper bound for −A, and
we have

y ≤ −x⇒ −y ≥ x. (2)

(1) and (2) show that the two numbers x and −y are equal, which is what we wanted. �

Solution for Problem 9, page 22. We have a binary relation < on the set C of complex
numbers, and we have to check that it’s an order. This means that it has to satisfy conditions
(i) and (ii) in Definition 1.5.

Checking condition (i). Let

x = a+ bi, y = c+ di

be two complex numbers. There are three possibilities for a and c:
One case is a < c for the usual order on the set of real numbers, in which case x < y for

the order defined on C in the text of the problem.
Another case is a > c, which means x > y as well, again by the definition of > on C.
Finally, you could have a = c. This splits into three further cases:
b < d, which means x < y;
b > d, which means x > y;
b = d; since we are also in the case a = c, this means x = y.
All of these cases are mutually exclusive, so we’ve checked that exactly one of the possibil-

ities

x < y, x = y, x > y

holds.
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Checking condition (ii). Suppose x < y and y < z for some

x = a+ bi, y = c+ di, z = e+ fi ∈ C.

Then, either (1) a < c or (2) a = c and b < d.
Similarly, there are two possibilities for y and z: either (1’) c < e or (2’) c = e and d < f .
Now check that x < z in all four possible cases: (1)+(1’), (1)+(2’), (2)+(1’) and (2)+(2’).
Finally, the problem asks whether the order < on C has the least upper bound property. I

claim it does not. To prove this, I need to show you a subset of C bounded above which does
not have an upper bound.

Consider the following subset:

A = {bi : b ∈ R}.
So in other words, this is the set of those complex numbers a+ bi whose first component a is
zero.

First, I claim it’s bounded above. Indeed, the number 1 = 1 + 0i is an upper bound for
it. Next, I claim it has no least upper bound. To see this, notice first that the sett of upper
bounds for A is

B = {a+ bi : a > 0}.
There is no smallest element in B, because for any element a+ bi ∈ B the element a

2 + bi is
still in B but is strictly smaller than a+ bi. �

Extra Problem 1. Find the supremum and infimum of the sets

A =

{
(−1)n

n2
: n = 1, 2, 3, . . .

}
, B = {x ∈ R : 2x2 − 5x+ 1 < 0}

and

C = {3−n + 7−m : m,n = 1, 2, 3, . . .}.

Solution. We’ll do these in turn.
Set A. For odd n the elements (−1)n

n2 are negative, while for even n they are positive.
Moreover the absolute values ∣∣∣∣(−1)n

n2

∣∣∣∣ =
1

n2

keep decreasing as n increases, so you’ll get the largest possible element of A for the smallest
even n, which is n = 2, and the smallest possible element of A for the smallest odd n, which
is n = 1. In other words, we have

inf A =
(−1)1

12
= −1, supA =

(−1)2

22
=

1

4
.

Set B. First solve the equation 2x2 − 5x+ 1 = 0 to see what the zeros of that polynomial
are. You’ll find the two solutions

x± =
5±
√

17

4
.

The graph of f(x) = 2x2 − 5x + 1 is a parabola intercepting the x-axis are the two points
x− and x+, and increasing to infinity both at x→ −∞ and x→∞. So the set B where the
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value of f(x) is negative is exactly the interval (x−, x+), which means that

inf B = x− =
5−
√

17

4
, supB = x+ =

5 +
√

17

4

Set C. When either m or n increases the value 3−n + 7−m decreases, so you’ll get the
largest element of C at m = n = 1; that’s 1

3 + 1
7 = 10

21 .
On the other hand, as m,n → ∞ the values get ever smaller and in fact approach 0

arbitrarily closely. That means that any lower bound for C must be ≤ 0. On the other hand,
all elements of C are positive, so 0 is a lower bound. Al in all, we have

inf C = 0, supC =
10

21
.

�

Extra Problem 2. Let A and B be two non-empty sets of real numbers, and denote by
A+B the set {a+ b : a ∈ A, b ∈ B}.

Show that sup(A+B) = supA+ supB.

Solution. Just as in the solution to Problem 5 above, we’ll prove that each of the two numbers
is at least as large as the other one, so that they must be equal.

Let α = supA, β = supB, and s = sup(A+B).
Proof that s ≤ α + β. This was the easier of the two inequalities. Let x ∈ A and y ∈ B

be two arbitrary elements. Then α ≥ x and β ≥ y because α and β are upper bounds for A
and B respectively, so α+ β ≥ x+ y. Since this happens for all possible choices of x ∈ A and
y ∈ B, the number α + β must be an upper bound for A + B. But s was by definition the
least upper bound for the same set, so s ≤ α+ β, as claimed.

Proof that s ≥ α + β. We will do this by contradiction. Suppose it’s not the case that
s ≥ α+ β. Then, we must have s < α+ β. Let ε > 0 be a positive number so small that

2ε < α+ β − s. (3)

It’s possible to choose such a number, since my assumption is that α+β−s is strictly positive.
Putting the s on the left and the 2ε on the right in (3), I get

s < (α− ε) + (β − ε).
Remember that α and β were the least upper bounds of A and B respectively. This means
that α− ε and β − ε are not upper bounds for A and B, so I can find

A 3 a > α− ε and B 3 b > β − ε. (4)

Adding up these inequalities yields

A+B 3 a+ b > (α− ε) + (β − ε),
which in turn is greater than s by (4). But this now contradicts the fact that s was an upper
bound for A+B.

We have our contradiction, which means that our assumption s < α + β must be wrong.
This gets us s ≥ α+ β, which is what was needed. �


