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Two characterizations of compactness

The purpose of this note is to prove two results that I mentioned in class, on characterizing
compactness via other properties we learned about.

1. Convergent subsequences

The first result, which I stated without proof, is

Theorem 1. A metric space (X, d) is compact if and only if every sequence in X has a
convergent subsequence.

Before going into the proof, recall the following theorem from the previous note posted on
the class website.

Theorem 2. A metric space X is compact if and only if every infinite subset of X has a
limit point. �

Proof of Theorem 1. We’ll use Theorem 2 and substitute that property (every infinite subset
has a limit point) for compactness. The goal is then to show that this property is equivalent
to every sequence having a convergent subsequence.

Suppose every infinite subset of X has a limit point. Now let (xn)n be a sequence
in X. There are two possibilities: either the set {xn} is infinite, or it isn’t.

Case 1: The set {xn} is finite. Then, infinitely many terms of the sequence, say xn1 ,
xn2 , etc. for n1 < n2 < · · · , will be equal. But then the subsequence consisting of these terms
is constant and hence convergent.

Case 2: The set {xn} is infinite. By assumption, the set will then have a limit point x.
We proved in class that the set of limit points of the range {xn} of the sequence is contained
in the set of limits of subsequences of (xn)n. This means that there exists a subsequence of
(xn) that converges to x, and we are done with case 2.

Cases 1 and 2 ensure that I can extract a convergent subsequence from any sequence, so
we are finished with one implication.

Conversely, assume every sequence in X has a convergent subsequence. I now
have to show that every infinite subset S ⊆ X has a limit point. Since S is infinite, I can
select distinct elements xn ∈ S for positive integers n.

The points xn make up a sequence, which has a convergent subsequence yk = xnk
by

assumption. Let y be the limit of (yk)k. For any δ we can find some N such that

d(xnk
, y) = d(yk, y) < δ
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for all k ≥ N . Since the points yk are all distinct (because they are among the distinct points
xn), there are infinitely many yks in the neighborhood Nδ(y). In particular, there is at least
one that is different from y. Since δ > 0 was arbitrary, this means that y is a limit point of
{yk} and hence also of the larger set S.

We have shown that every infinite subset of X has at least one limit point, so we are done
with the second implication and the theorem. �

2. Completeness

Another characterization of compactness that I stated in class had to do with both com-
pleteness and total boundedness. Let us recall the relevant definitions.

Definition 3. A metric space (X, d) is totally bounded if for every δ > 0 the space X can be
covered by finitely many neighborhoods of radius δ. �

Definition 4. A metric space is complete if every Cauchy sequence is convergent. �

With this in place, we can now state the result.

Theorem 5. A metric space is compact if and only if it is complete and totally bounded.

Proof. Let (X, d) be a metric space.

(⇒) Here we are assuming X is compact and showing that it must then be both complete
and totally bounded. You proved on your midterm that compact implies totally bounded (or
at any rate the solutions posted on this website prove that). To show that compactness also
implies completeness we proceed as follows.

Let (xn)n be a Cauchy sequence in X. By compactness and Theorem 1 we know that
(xn) has a subsequence yk = xnk

converging to some y ∈ X. By Problem 20 on page 82 of
our book, the fact that (xn) is Cauchy then implies the whole sequence converges to y. In
particular the Cauchy sequence (xn) is convergent, and we are done with the proof of the
implication ⇒.

(⇐) This time around we are assuming that X is both complete and totally bounded, and
seeking to prove that it is compact.

According to Theorem 1, it is enough to show that an arbitrary sequence in X has a
convergent subsequence. In fact, since by completeness Cauchy sequences are convergent,
it actually suffices to show that every sequence has a Cauchy subsequence. This is what
Lemma 6 below does. �

Lemma 6. Any sequence (xn) in a totally bounded metric space (X, d) has a Cauchy subse-
quence.

Proof. We will construct a Cauchy subsequence yk = xnk
for n1 < n2 < · · · recursively as

follows.
First, cover X with finitely many neighborhoods of radius 1

2 (possible, by total bounded-
ness). Because there are only finitely many of them, one of these neighborhoods will contain
infinitely many terms xn of the sequence. Let I1 ⊆ Z>0 be an infinite set of indices such
that all xn, n ∈ I1 are contained in the same radius-12 neighborhood, and choose n1 ∈ S1
arbitrarily.
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For our second step in the recursion, cover X with finitely many neighborhoods of radius
1
4 = 1

2·2 . One of these neighborhoods contains infinitely many xn for n ∈ S1, and we denote
by S2 ⊆ S1 an infinite set of indices n for which xn belongs to this neighborhood. Then we
select some n2 > n1 in S2.

We continue the recursion as expected: in step k ≥ 3 we cover X with finitely many
neighborhoods of radius 1

2·k , denote by Sk ⊂ Sk−1 an infinite set of indices n such that xn is
contained in this neighborhood, and select some nk ∈ Sk bigger than all previously-selected
indices (i.e. nk−1 > · · · > n1).

For all positive integers M and all k, ` ≥ M the indices nk and n` are by construction in
SM . This means that xnk

and xn`
are in the same radius- 1

2M neighborhood N 1
2M

(x) for some

x ∈ X, and hence

d(yk, y`) = d(xnk
, xn`

) ≤ d(xnk
, x) + d(xn`

, x) <
1

2M
+

1

2M
=

1

M
.

In other words, for any M the terms yk and y` are 1
M -close to one another whenever k and

` are large enough. This is what it means for a sequence to be Cauchy, which concludes the
proof of the lemma. �
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