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Some notes on compactness

This short write-up is meant to supplement the discussion on compactness in Chapter 2 of
our textbook. Specifically, the main result below (Theorem 3) is kind of parallel to Theorem
2.41. I will expand on this after the proof of Theorem 3.

Before stating the theorem, a word of caution. In both the textbook and in class we have
talked about compactness as a relative notion. That is, we talk about subsets of a metric
space being compact. In fact, this complicates the discussion unnecessarily. As the paragraph
following Theorem 2.33 notes, while being open or closed only makes sense relatively (i.e. you
are open or closed as a subset of some ambient metric space), being compact makes sense on
its own.

More precisely, say (X, d) is a metric space and A ⊆ X is a subset. Then, I can restrict
the metric d to A and think of (A, d) as a metric space in its own right. On the one hand, I
can ask

Question 1. Is A ⊆ X is compact?

This meant that out of every open subcover A ⊆
⋃
αGα of A in X I can extract a finite

subcover. On the other hand, I can ask

Question 2. Is (A, d) itself compact on its own?

According to the definition, this would mean that out of every cover A =
⋃
β Uβ with sets

Uβ ⊆ A that are open with respect to the metric space structure (A, d) I can extract a finite
subcover.

Now, it’s is important to understand that the open subsets U ⊆ A with respect to the
metric space structure (A, d) are exactly the intersections A∩G for open subsets G ⊆ X (this
is essentially what Theorem 2.30 says).

In conclusion, Questions 1 and 2 are equivalent: the answer to both will be the same, so that
from now on I will freely talk about compact metric spaces in isolation whenever convenient
(‘in isolation’ as in, not necessarily viewed as subsets of some larger ambient metric space).

OK, now on to the theorem.

Theorem 3. For any metric space (X, d) the following conditions are equivalent:

(a) X is compact.
(b) every infinite subset of X has a limit point.

Proof. We will prove the two implications separately.

(a) ⇒ (b). We pretty much did this in class on Monday, Oct 19, but I will type it again
here in very slightly rephrased form. We prove the contrapositive. That is, if I can find an
infinite subset S ⊆ X that does not have a limit point, then X cannot be compact.
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Let S ⊆ X be as in the previous paragraph. Then by the definition of a limit point, for
every x ∈ X there is a neighborhood Gx of x that contains no elements of S except perhaps
for x itself.

Now, every x ∈ X is covered by Gx, so the family {Gx}x∈X is an open cover of X. I claim
I cannot extract a finite subcover from it. This is because by our choice of Gx, each contains
at most one element of S. This means that any finite collection of Gxs will cover only finitely
many points in S, and so cannot cover all of S ⊆ X.

In conclusion, the assumption that (X, d) violates (b) leads to the conclusion that it doesn’t
satisfy (a) either, meaning that indeed (a) implies (b).

(b) ⇒ (a). This was the more difficult implication.
We assume (X, d) satisfies (b), and fix an arbitrary open cover {Gα}α of X. We have to

show that a finite subcover can be extracted. Before getting into that though, I will reindex
the family {Gα} of open sets to make it more convenient, as follows.

By the definition of a cover, every x ∈ X is contained in some Gα. Pick one such Gα for
each x, and call it Gx. So now my family of open sets is {Gx}x∈X , and for all x we have
x ∈ Gx.

Out of the open cover {Gx} I want to extract a finite subcover. We will first take a partial
step in that direction:

Step 1: {Gx} admits a subcover that is at most countable. For every positive
integer n, I will say that a point x ∈ X is n-distant (relative to the cover {Gx}) if the
neighborhood N 1

n
(x) is contained in Gx (so think of it as saying that x is at least 1

n away

from the “boundary” of Gx).
Now let Xn be the set of all n-distant points. Note that for every x some neighborhood

N 1
n

(x) is contained in Gx (for sufficiently large n), so X =
⋃
nXn.

Claim: Xn can be covered by only finitely many sets Gx for n-distant x. Suppose
not. Let x1 be some n-distant point. We are assuming that Gx1 does not cover all of Xn, so
there must be some n-distant x2 ∈ Xn \Gx1 . Again, we are assuming that

Xn 6⊆ Gx1 ∪Gx2 ,

so there is some n-distant point

x3 ∈ Xn \ (Gx1 ∪Gx2) .

Continue this recursive process, finding, for each positive integer k > 1, an n-distant point

xk ∈ Xn \
(
Gx1 ∪ · · · ∪Gxk−1

)
.

The set {xk} is infinite, because xk ∈ Gxk but x` are by choice outside of Gxk for ` > k.
By condition (b) in the statement of the theorem, the infinite set {xk} has a limit point,

called, say, x. But then, by Theorem 2.20, the neighborhood N = N 1
2n

(x) contains infinitely

many of the xk. This is not possible for the following reason.
Since xk ∈ Gk is n-distant, we have

N 1
n

(xk) ⊆ Gxk .

On the other hand, for all ` > k the point x` is outside of Gxk by choice and hence outside of
N 1

n
(xk) as well. In other words, we have

d(xk, x`) ≥
1

n
, ∀k 6= `. (1)
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Now, if two distinct xk and x` were to belong to N , we would have

d(xk, x`) ≤ d(x, xk) + d(x, x`) <
1

2n
+

1

2n
=

1

n
,

contradicting (1).
We have reached a contradiction, which can only stem from our assumption that Xn could

not be covered by finitely many Gx for n-distant x. This finishes the proof of the claim.
Now extract an at-most-countable subcover from {Gx} as follows. For each n, keep only

finitely many sets Gx for n-distant x, but enough to ensure that they cover Xn. This is
possible by the claim.

You have kept finitely many Gxs for each n, so in total you have kept at most countably
many Gxs. The sets that are left do indeed cover X, because you have made sure that for
each n the set Xn is covered and we observed above that X =

⋃
nXn.

This concludes the proof of Step 1. To simplify notation, let {Gn} be an open subcover
extracted from {Gx}.

Step 2: The at-most-countable cover {Gn} admits a finite subcover. Suppose not.
Then, I can find elements xn ∈ X for n = 1, 2, · · · such that

xn 6∈ G1 ∪ · · · ∪Gn, ∀n > 0.

The xn make up an infinite set (because xn must be contained in some Gm, but the xp, p > m
are not contained in that same Gm by assumption). Condition (b) of the statement of the
theorem then says that the set {xn} should have a limit point, say x.

Since x ∈ X and {Gn} is a cover, we have x ∈ Gm for some m, and hence there is some
neighborhood N = Nr(x) ⊆ Gm. But then, for n > m, xn 6∈ N , contradicting the fact that
every neighborhood of x should contain infinitely many xn (Theorem 2.20).

We have reached a contradiction based on the assumption that there was not a finite
subcover of {Gn}, so such a finite subcover must exist. This concludes the proof of Step 2
and the theorem. �

Now, how does Theorem 3 relate to Theorem 2.41? I mentioned before that they are
incomparable, in the sense that neither is stronger than the other. Theorem 2.41 says more
in the sense that in addition to our conditions (a) and (b) (which in 2.41 correspond to (b)
and (c) respectively) it also throws the condition of being both bounded and closed in Rk
into the mix. The hypotheses of 2.41 however are correspondingly stronger, making it more
restrictive: it only talks about subsets of Rk, whereas Theorem 3 is about arbitrary metric
spaces.

So: Theorem, 2.41 assumes more but also says more than Theorem 3.
Note also that although conditions (b) and (c) are absolute in nature, in the sense that you

can talk about them being satisfied by E as a metric space in its own right, with the metric
inherited from Rk (so the book’s E is like our X in Theorem 3), condition (a) is relative, i.e.
it needs an ambient metric space because it makes use of the notion of being closed.

As noted in the discussion after 2.41, the metric spaces Rk are very special in one respect:
closed bounded subsets are compact. Because this result is, as mentioned in the textbook, due
to two mathematicians named Heine and Borel, the following definition has become standard.

Definition 4. A metric space has the Heine-Borel (or H-B) property or is Heine-Borel (or
H-B) if its closed bounded subsets are compact. �
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The Heine-Borel property is why Theorem 2.41 needs to assume we are in Rk: not all
metric spaces are H-B. Some counterexamples are mentioned in the book, one of which is
worked out as Exercise 16. Here are some more examples of metric spaces with and without
the H-B property.

Example 5. Compact metric spaces are H-B. Indeed, every closed subset of a metric space
is compact by Theorem 2.35. �

Example 6. The spaces Rk are H-B not only when equipped with the usual distance function
coming from the norm |·| introduced in the book (in the section on Euclidean spaces in Chapter
1), but also with the taxicab distance d1 defined by

d1(x,y) =
k∑
i=1

|xi − yi|

for

x = (x1, · · ·xk), y = (y1, · · · yk)
and the supremum distance d∞ defined by

d∞(x,y) =
k

sup
i=1
|xi − yi|

(try to prove these are distance functions). �

Example 7. Let X be any infinite set whatsoever, and equip it with the discrete metric d
defined by d(x, y) = 1 whenever x 6= y (and necessarily d(x, x) = 0, because I want it to be a
metric).

Try to prove as an exercise that all subsets of X are open, and hence all subsets are also
closed. On the other hand X is clearly bounded, since for any point x we have X = N2(x)
(that is, all points y ∈ X are less than 2 away from x). So every subset of X is closed and
bounded, but only the finite subsets are compact (try to prove this last statement; it should
be easy to do directly from the definition). �

Example 8. We can mimic the supremum distance d∞ from Example 6 in an “infinite-
dimensional” setting as follows.

Let `∞ denote the set of bounded sequences

x = (x1, x2, x3, · · · )
of real numbers, and define

d∞(x,y) = sup
i≥1
|xi − yi|.

Once more this can be shown to be a distance function, so that (`∞, d∞) is a metric space. I
claim it does not have the H-B property.

To see this, consider the set

E = {en : n = 1, 2, · · · },
where en is the sequence (xk) with xn = 1 and xm = 0 for m 6= n. So

e1 = (1, 0, 0, · · · ),

e2 = (0, 1, 0, · · · ),
and so on
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First, the set is bounded because the distance between any two ens is 1. On the other
hand, E is also closed. In fact, we have

Lemma 9. The subset E ⊂ `∞ has no limit points.

Proof. If it did have a limit point x say, the neighborhood N = N 1
2
(x) would contain infinitely

many points of E by 2.20. But this is impossible: as noted before, the distance between any
two different ens is 1. If say em and en were both inside N , we would have

d(em, en) ≤ d(x, en) + d(x, em) <
1

2
+

1

2
= 1,

contradicting d(em, en) = 1. �

Having no limit points is definitely sufficient to ensure that E is closed (because E′ is
empty, so E = E ∪ E′ = E). But it also ensures that E is not compact: it’s an infinite set
with no limit point, violating condition (b) in Theorem 3. �


