Solutions for bonus homework

These questions are meant to get you to explore the notion of perfect set a bit, getting you some additional points towards your course grade along the way.

There is no penalty if you do not turn them in, and no partial credit: each of the three questions, if answered correctly with correct justification, is worth 0.5% extra credit.

- **1.** Does there exist a non-empty perfect subset of \mathbb{R} that contains no rational numbers?
- 2. Same as above, with 'irrational' instead of 'rational'.
- **3.** Same as before, with 'algebraic' instead of '(ir)rational'.

Part 2. This would have been the easiest one to answer: 'no'.

A set as in the text of the problem would have to be contained in \mathbb{Q} , and hence be at most countable. But according to Theorem 2.43, non-empty perfect subsets of \mathbb{R} are uncountable, so this cannot happen.

Parts 1 and 3. These had a common answer: 'yes'. Both \mathbb{Q} and the set of algebraic numbers are countable (the second one by Problem 2 on page 43). So the positive answer follows from

Proposition 1. For any countable subset $S \subset \mathbb{R}$, there is a non-empty perfect subset of \mathbb{R} contained in $S^c = \mathbb{R} \setminus S$.

Proof. Enumerate the set S as

$$S = \{s_1, s_2, \cdots\}.$$

Now define the sets $T_0 \supset T_1 \supset \cdots$ recursively as follows.

First, take $T_0 = \mathbb{R}$.

Next, let $I_1 = (a_1, b_1)$ be an open interval containing s_1 and such that $a_1, b_1 \notin S$, and set $T_1 = T_0 \setminus I_1$.

Next, let $I_2 = (a_2, b_2) \subset T_1$ be an open interval containing s_2 , with $a_2, b_2 \notin S$, and such that either $I_1 = I_2$ (if s_2 was already in I_1), or the four endpoints of I_1 and I_2 are all distinct if $s_2 \notin I_1$. Then set $T_2 = T_1 \setminus I_2$.

Now continue this procedure recursively:

At step $n \geq 3$ choose an interval $I_n = (a_n, b_n) \subset T_{n-1}$ that contains s_n , such that either I_n coincides with one of the previous intervals I_1 up to I_{n-1} if their union already contains s_n , or the endpoints of I_n are distinct from those of all previous I_j , $1 \leq j \leq n-1$. Then set $T_n = T_{n-1} \setminus I_n$

By construction the intersection $T = \bigcap_{n>0} T_n$ does not intersect S (because at each step we are removing one more point $s_n \in S$), and you can show just as for the Cantor set that T is perfect.

Proposition 1 applies in particular to $S = \mathbb{Q}$ and S the set of algebraic numbers, so we are done.