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A proof that R is uncountable

This is a write-up of the proof we did in class for the following result.

Theorem 1. The set R of all real numbers is uncountable.

This boiled down to showing that R is not countable, i.e. there is no bijection f : Z>0 → R.
Before going into the proof, I’ll need some preparation.

First, remember that for real numbers a < b we’re denoting by (a, b) the open interval

{x ∈ R : a < x < b}.
I’ll need the following notion.

Definition 2. Two open intervals

(a, b) = I ⊂ J = (c, d)

are strictly nested if a > c and b < d. �

Remark 3. In other words, one is contained in the other and all four of their endpoints are
distinct. �

We first proved an auxiliary result.

Lemma 4. If I1 ⊃ I2 ⊃ I3 ⊃ · · · is a sequence of strictly nested open intervals, then the
intersection ⋂

n≥1

In ⊂ R (1)

is non-empty.

Proof. Let In = (an, bn). I’ll define the sets

A = {an : n > 0} and B = {bn : n > 0}.
Note that every element of B is greater than every element of A, so that A is bounded above.
It’s also non-empty, so it has a supremum. Denote a = supA.

Claim: a ∈ In for every n > 0. Since a is an upper bound for A, we have

an ≤ a, ∀n > 0.

We cannot have equality in any of these inequalities, because if say an = a then an+1 > an = a
(this is where the hypothesis of being strictly nested is used). In conclusion,

an < a, ∀n > 0. (2)

On the other hand, all bn are upper bounds for A. Since a is the least upper bound, we get

a ≤ bn, ∀n > 0.
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Once more, we cannot have equality in any of these: if a = bn, then bn+1 < bn = a (once more
the condition of being strictly nested is needed for the inequality bn+1 < bn). So we have

a < bn, ∀n > 0. (3)

Equations (2) and (3) together say that a ∈ (an, bn) = In for all n > 1.
This proves the claim. Since we’ve exhibited an element a that belongs to the intersection

(1), this concludes the proof of the lemma. �

Finally, we can get down to business.

Proof of Theorem 1. We proceed by contradiction: suppose there is a bijection f : Z>0 → R.
For k ∈ Z>0 I’ll denote f(k) by rk.

Our assumption means that rk exhaust all of R as k ranges over the positive integers. I
will construct a sequence I1 ⊃ I2 ⊃ · · · of strictly nested open intervals to which we will
then apply Lemma 4. I have to say what the nth interval In = (an, bn) is. I will select the
endpoints an and bn from among the rks recursively as follows.

• Set a1 = r1;
• Let b1 be the earliest rk (that is, the one with the smallest index n) such that a1 < rk;
• Let a2 be the earliest rk such that a1 < rk < b1;
• Let b2 be the earliest rk such that a2 < rk < b1;
• · · ·

In other words, at every step choose the earliest rn that will satisfy the inequalities you need
in order that the intervals In = (an, bn) be strictly nested.

Note that it’s always possible to find the rk you need, because at each step you’re looking
for the earliest rk that is strictly between two numbers ai < bj that you’ve already chosen.
This is possible for example because there are always rational numbers strictly between any
two distinct real numbers (this is part (b) of Theorem 1.20 in your book).

Once I have the sequence of strictly nested open intervals {In}, I know from Lemma 4 that
there is a real number

r ∈
⋂
n>0

In.

Claim: r 6= rk for all k > 0. To see this, let us examine the construction of the ans and bns.
Remember that we were selecting the as and bs by choosing from among the rks. I’ll denote

the mth rk selected in that recursive process by rkm . So rk1 = a1, rk2 = b1, rk3 = a2, etc. In
other words, rkm corresponds to the mth bullet point in the above description of the recursion.

First, rk1 = r1 = a1 cannot be r, because r ∈ I1 and so is greater than the left hand
endpoint a1 of I1 = (a1, b1).

Next, remember that b1 was the earliest rk that is bigger than a1. This means that none
of the rs that are listed between rk1 and rk2 = b1 are bigger than a1, so none of them are in
I1. Consequently, none of them can coincide with r ∈ I1.

Next, a2 was the earliest rk caught between a1 and b1, so none of the rks listed between
rk2 = b1 and rk3 = a2 are in the interval (a1, b1), so none of them coincide with r.

Continue this argument inductively to conclude that for all m, the rks listed between rkm
and rkm+1 are all different from r. This proves the claim.

Since we’ve come up with a real number r that is different from all rn, this contradicts our
assumption that the rns were all of the real numbers. We have our contradiction, so we are
done. �


