Finding potentials for vector fields

I'll illustrate here the process of finding a potential for a conservative vector field
\[\langle P(x, y), Q(x, y) \rangle \]
in the plane. This is meant to fill in the piece of the Friday, Oct 20 lecture, missing because of the computational error I made.

The vector field I'll work with is
\[\langle P(x, y), Q(x, y) \rangle = \langle \sin(x + y) + x \cos(x + y) + 2x, x \cos(x + y) \rangle. \]

Suppose we already know that it’s conservative. The problem is then to find a potential \(f(x, y) \) for it, i.e. a function satisfying the two equations
\[f_x = P, \quad f_y = Q. \]

From the second equation \(f_y = x \cos(x + y) \), by integrating with respect to \(y \) (and keeping \(x \) constant) we obtain
\[f(x, y) = x \sin(x + y) + C(x). \quad (1) \]

Note the +C(x) term! It’s like the +C from antiderivatives, except here we’re secretly doing many antiderivatives, one for each \(x \), and the corresponding constants \(C \) might depend on \(x \).

We now make use of the second piece of information we have about \(f \): the fact that \(f_x = P \).

Plugging (1) into \(f_x = P \) reads
\[\sin(x + y) + x \cos(x + y) + C'(x) = \sin(x + y) + x \cos(x + y) + 2x, \]
so \(C'(x) = 2x \). This means that \(C(x) = x^2 + D \) for some constant \(D \). Plugging this back into (1) we finally get
\[f(x, y) = x \sin(x + y) + x^2 + D \]
for some constant \(D \).

Note that potentials are never unique: if \(f \) is a potential then so is \(f(x + y) + D \) for any constant \(D \), so don’t forget that extra constant (just like the +C for antiderivatives).