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Methylphenidate Exerts Dose-Dependent Effects
on Glutamate Receptors and Behaviors

Jia Cheng, Zhe Xiong, Lara J. Duffney, Jing Wei, Aiyi Liu, Sihang Liu, Guo-Jun Chen, and Zhen Yan
Background: Methylphenidate (MPH), a psychostimulant drug used to treat attention-deficit/hyperactivity disorder, produces the
effects of increasing alertness and improving attention. However, misuse of MPH has been associated with an increased risk of
aggression and psychosis. We sought to determine the molecular mechanism underlying the complex actions of MPH.

Methods: Adolescent (4-week-old) rats were given one injection of MPH at different doses. The impact of MPH on glutamatergic
signaling in pyramidal neurons of prefrontal cortex was measured. Behavioral changes induced by MPH were also examined in parallel.

Results: Administration of low-dose (.5 mg/kg) MPH selectively potentiated N-methyl-D-aspartate receptor (NMDAR)–mediated excitatory
postsynaptic currents (EPSCs) via adrenergic receptor activation, whereas high-dose (10 mg/kg) MPH suppressed both NMDAR-mediated and
alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor–mediated EPSCs. The dual effects of MPH on EPSCs were associated with
bidirectional changes in the surface level of glutamate receptor subunits. Behavioral tests also indicated that low-dose MPH facilitated prefrontal
cortex–mediated temporal order recognition memory and attention. Animals injected with high-dose MPH exhibited significantly elevated
locomotive activity. Inhibiting the function of synaptosomal-associated protein 25, a key SNARE protein involved in NMDAR exocytosis, blocked
the increase of NMDAR-mediated EPSCs by low-dose MPH. In animals exposed to repeated stress, administration of low-dose MPH effectively
restored NMDAR function and temporal order recognition memory via a mechanism dependent on synaptosomal-associated protein 25.

Conclusions: These results provide a potential mechanism underlying the cognitive-enhancing effects of low-dose MPH as well as the
psychosis-inducing effects of high-dose MPH.
Key Words: AMPA receptors, methylphenidate, NMDA receptors,
prefrontal cortex, SNAP-25, stress
Methylphenidate (MPH) is a psychostimulant widely used
for the treatment of attention-deficit/hyperactivity dis-
order (ADHD) in adolescents and adults (1). Therapeutic

dose of MPH effectively improves cognitive function and reduces
hyperactivity in individuals with ADHD (2) as well as normal human
subjects and animals (3,4). However, overdose of MPH produces
agitation, restlessness, and hallucinations in humans (5) and
hyperlocomotion and impaired cognition in animals (6).
Intermediate-term administration of MPH in juvenile rodents was
found to induce long-lasting behavioral adaptations (7,8). To
achieve therapeutic benefit and minimal side effects, it is sug-
gested that dosing of MPH should be titrated to an optimal level.

The biochemical action of MPH is well characterized. The
dopamine transporter (DAT) and norepinephrine transporter
(NET) are blocked by MPH, resulting in elevated concentration
of dopamine and norepinephrine at synapses (3,9,10). However,
the mechanisms by which therapeutic dose of MPH acutely
improves cognitive functions and overdose of MPH induces
psychosis are unclear.

The prefrontal cortex (PFC) is a key brain region mediating
cognitive and executive functions, including working memory,
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sustained attention, inhibitory response control, and cognitive
flexibility (11,12). A delayed maturation in the PFC (13), dysfunc-
tion of the frontostriatal circuitry (14), and hypoactivation in the
frontal cortex (15,16) have been implicated in individuals with
ADHD. Also, the PFC is identified as the primary target of MPH
(17). The glutamatergic pyramidal neurons are one of the major
cellular constituents in the PFC. Glutamatergic transmission that
controls PFC activity is pivotal for cognitive function such as
working memory (11,18). Disturbed glutamate receptors are
implicated in cognitive dysfunction associated with many mental
disorders (19). We speculated that glutamate receptors are
potential targets of MPH critically involved in PFC-mediated
cognitive functions. In this study, we examined the impact of
low-dose versus high-dose MPH on glutamatergic transmission
in PFC of adolescent rats and its relevance to behavioral
outcomes.
Methods and Materials

Animals and Reagents
Male Sprague-Dawley rats were purchased from Harlan Labo-

ratories (Indianapolis, Indiana). On arrival, animals were allowed
4–5 days to acclimate before the experiments. Rats at the early
adolescent period (p25–30) (20) were paired-housed on a 12-hour
light-dark cycle and provided ad libitum access to food and water.
Rats from more than one litter were included in each treatment to
avoid litter effects. All animal experiments were performed with
the approval of the Institutional Animal Care and Use Committee
of the State University of New York at Buffalo. See Supplementary
Methods and Materials in Supplement 1 for details of reagents.

Animal Surgery
The delivery of peptides to the PFC was conducted as we

described previously (22). See Supplementary Methods and
Materials in Supplement 1 for details.
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Electrophysiologic Recordings
Recordings of evoked synaptic currents in prefrontal cortical

slices used standard whole-cell voltage-clamp technique as we
described previously (23,24). The paired pulse ratio of N-methyl-D-
aspartate receptor (NMDAR)–mediated excitatory postsynaptic
currents (EPSCs) was calculated as described previously (25). See
Supplementary Methods and Materials in Supplement 1 for details.

Biochemical Measurement of Surface and Total Proteins
Surface and total alpha-amino-3-hydroxy-5-methyl-4-isoxazole

propionic acid receptors (AMPARs) and NMDARs were detected as
we described previously (23,24). See Supplementary Methods and
Materials in Supplement 1 for details.

Repeated Stress Paradigm
Repeated restraint stress was carried out as we previously

described (24,26). Briefly, Sprague-Dawley rats were placed in
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Figure 1. Low-dose methylphenidate (MPH) selectively enhances
N-methyl-D-aspartate receptor–mediated excitatory postsynaptic currents
(NMDAR-EPSC), whereas high-dose MPH reduces both NMDAR-EPSC and
alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor–
mediated excitatory postsynaptic currents (AMPAR-EPSC). Input-output
curves of NMDAR-EPSC (A) and AMPAR-EPSC (B) evoked by a series of
stimulation intensities in prefrontal cortex pyramidal neurons from rats
with a single intraperitoneal injection of saline, low-dose MPH (.5 mg/kg),
or high-dose MPH (10 mg/kg). *p � .05, **p � .01. Inset shows repre-
sentative EPSC traces. Scale bars ¼ 50 pA, 100 msec (A); 50 pA,
20 msec (B). Bar graphs show the paired-pulse ratio (PPR) of NMDAR-
EPSC (interstimulus interval, 100 msec) (C) and decay time constant of
NMDAR-EPSC (D) in prefrontal cortex pyramidal neurons taken from
animals injected with saline, low-dose MPH, or high-dose MPH. Inset
shows representative NMDAR-EPSC traces evoked by paired pulses. #p �
.001. Scale bar ¼ 50 pA, 100 msec.
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air-accessible cylinders for 2 hours daily (10:00 AM-12:00 PM) for 5–7
days (starting at p21–23). The container size was similar to the
animal size, which made the animal almost immobile in the
container. Experiments were performed 24 hours after the last
stressor exposure.

Behavioral Testing
Temporal order recognition memory (TORM), a cognitive behav-

ior controlled by PFC (27); locomotor activity; and attentional set-
shifting tasks were performed as previously described (24,26,28). See
Supplementary Methods and Materials in Supplement 1 for details.

Statistics
Experiments with two groups were analyzed statistically using

unpaired Student t tests. Experiments with more than two groups
were subjected to one-way or two-way analysis of variance
(ANOVA), followed by Bonferroni post hoc tests.

Results

In Vivo Administration of Low-Dose MPH Enhances NMDAR-
Mediated Synaptic Currents; High-Dose MPH Reduces
Glutamatergic Transmission in Cortical Neurons

To investigate the impact of MPH on glutamate signaling, we
examined the NMDAR-mediated and AMPAR-mediated EPSCs in the
pyramidal neurons of PFC from adolescent male rats (4 weeks old)
subjected to a single administration of low-dose (.5 mg/kg) or high-
dose (10 mg/kg) MPH. As shown in Figure 1A and B, two-way
ANOVA analysis revealed a significant main effect of MPH treatment
on NMDAR-mediated or AMPAR-mediated EPSCs (NMDA [F2,150 ¼
49.5, p � .001]; AMPA [F2,205 ¼ 18.7, p � .001]). Post hoc analysis
indicated that low-dose MPH significantly potentiated NMDAR-
mediated EPSCs (38%–57% increase, n ¼ 10–13 cells/4 rats per
group, p � .05) but not AMPAR-mediated EPSCs (�10% change,
n ¼ 14–21 cells/4 rats per group, p � .05). In contrast, high-dose
MPH markedly reduced both NMDAR-mediated and AMPAR-
mediated EPSCs (NMDA, 26%–48% decrease, n ¼ 10 cells/4 rats
per group, p � .05; AMPA acid, 36%–47% decrease, n ¼ 10–21 cells/
4 rats per group, p � .01). These results suggest that MPH exerts a
dose-dependent effect on glutamatergic transmission in the PFC.

To test whether the effects of MPH on NMDAR-mediated EPSCs
result from a presynaptic or postsynaptic mechanism, we measured
the paired pulse ratio, a readout that is affected by the presynaptic
transmitter release (29). As shown in Figure 1C, paired pulse ratio
was unchanged by low-dose MPH but was significantly elevated by
high-dose MPH (saline, 1.42 � .07, n ¼ 12; low-dose MPH, 1.41 �
.06, n ¼ 13; high-dose MPH, 1.85 � .09, n ¼ 12 [F2,36 ¼ 11.24,
p � .001, ANOVA]). This finding suggests that low-dose MPH
regulates glutamatergic transmission mainly via a postsynaptic
mechanism, whereas high-dose MPH might affect presynaptic
glutamate release or postsynaptic glutamate receptors. In addition,
the decay time constant was not statistically changed in animals
treated with MPH at low or high doses (saline, 202.0 � 15.9, n ¼ 11;
low-dose MPH, 252.0 � 18.8, n ¼ 15; high-dose MPH, 197.4 � 12.4,
n ¼ 11 [F2,47 ¼ .93, p � .05], ANOVA), suggesting that elevated
NMDAR-mediated EPSCs are mediated by both NR2A and NR2B
subunits.

In Vivo Administration of Low-Dose MPH Increases Surface
Level of NMDAR Subunits; High-Dose MPH Decreases Surface
NMDAR and AMPAR Subunits

Because the surface expression of glutamate receptors could
determine the strength of glutamatergic transmission, we performed
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biotinylation and Western blotting to examine the surface level of
NMDAR and AMPAR subunits in cortical slices from rats treated with
saline or MPH. As shown in Figure 2A, low-dose MPH (.5 mg/kg)
significantly enhanced the surface level of NMDAR subunits (NR1,
89.0% � 15.3% increase; NR2A, 117.3% � 18.4% increase; NR2B,
242.1% � 47.0% increase; n ¼ 4 pairs, p � .001, ANOVA) but
increased only slightly (not significantly) the surface level of AMPAR
subunits (GluR1, 39.0% � 9.8% increase; GluR2, 36.1% � 21.3%
increase; n ¼ 4 pairs, p � .05, ANOVA). Total protein levels of all of
these glutamate receptor subunits were unchanged by low-dose
MPH (n ¼ 5 pairs, p � .05, ANOVA).

In animals injected with a medium dose of MPH (2.5 mg/kg)
(30,31), only the surface NR1 level was modestly increased (36.2%
� 15.8% increase, n = 4 pairs, p � .05, ANOVA) (Figure 2A),
whereas other subunits had no significant change in surface
expression. However, a single administration of high-dose MPH
(10 mg/kg) induced a substantial reduction of the surface levels
of both NMDAR and AMPAR subunits (surface NR1, 45.0% �
12.6% decrease; surface NR2A, 32.7% � 7.8% decrease; surface
NR2B, 21.9% � 7.9% decrease; surface GluR1, 34.6% � 6.3%
decrease; surface GluR1, 37.5% � 10.6% decrease; n ¼ 7 pairs,
NR

*
#

0

100

200

300

400

NR1

NR2A

NR2B

Actin

0.5 2.5

MPH (mg/kg)

GluR2

GluR1

con

NR1

NR2A

NR2B

Actin

To
ta
l

GluR2

GluR1

To
ta
lP
ro
te
i n
/A
ct
in

*
*

Saline
MPH (1

0

100

20

40

60

80

120

NR
1
NR
2A

NR

S
ur
fa
ce
P
ro
te
in

NR2A

NR1

NR2B

GluR1

GluR2

Actin

Sa
lin
e
MP
H

(10
)

Surface Total

Sa
lin
e
MP
H

(10
)

100

20
40
60
80

120

0
N

S
ur
fa
ce
P
ro
te
in

S
ur
fa
ce

Figure 2. Low-dose methylphenidate (MPH) increases the surface level of N-
decreases surface NMDAR and alpha-amino-3-hydroxy-5-methyl-4-isoxazole
quantification analysis of the surface and total NMDAR and AMPAR subu
(.5 mg/kg or 2.5 mg/kg, intraperitoneal injection). *p � .05, #p � .001. (B) Imm
AMPAR subunits from the rats treated with saline or high-dose MPH (10 mg/k
p � .05, t test) (Figure 2B), without changing the total levels of
glutamate receptors (p � .05, t test). Taken together, these results
indicate that MPH exerts a dose-dependent bidirectional regu-
lation of the surface expression of glutamate receptors, which
may underlie the dual effects of MPH on NMDAR-mediated and
AMPAR-mediated synaptic currents.

In Vivo Administration of Low-Dose MPH Facilitates
Recognition Memory and Attention; High-Dose MPH Induces
Hyperlocomotion

Because cortical glutamatergic transmission mediates many
behavioral tasks, we examined the behavioral impact of MPH at
different doses in adolescent rats. The TORM, a cognitive
process controlled by medial PFC (24,27), was found to be
significantly enhanced in animals with a single injection of low-
dose (.5 mg/kg) MPH (discrimination ratio [DR] in saline, 29.1%
� 3.8%, n = 6; DR in low-dose MPH, 51.1% � 8.4%, n = 5;
p � .05, t test) (Figure 3A). In the test of perceptual attentional
set-shifting, an aspect of attention mediated by medial frontal
cortex (28), rats injected with low-dose MPH exhibited selective
improvement in the extradimensional shift, taking fewer trials
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to learn the new discrimination (trials to criterion, saline, 13.8
� .98, n ¼ 6; low-dose MPH, 8.6 � .4, n ¼ 5; p � .01, t test)
(Figure 3B). Locomotor activity was unchanged by the low-dose
MPH injection (number of midline crossing, saline, 11.6 � 1.7,
n ¼ 11; low-dose MPH, 12.1 � 2.5, n ¼ 7; p � .05, ANOVA)
(Figure 3D).

A single injection of high-dose (10 mg/kg) MPH profoundly
impaired the TORM (DR in saline, 32.0% � 6.4%, n ¼ 4; DR in
high-dose MPH, �7.7% � 14.2%, n ¼ 9; p � .05, t test)
(Figure 3C). A significant increase of locomotor activity was
observed in rats injected with high-dose MPH (number of midline
crossing, saline, 11.6 � 1.7, n ¼ 11; high-dose MPH, 34.0 � 3.6,
n ¼ 7 [F2,22 ¼ 24.5, p � .001, ANOVA]) (Figure 3D). Hyper-
locomotion caused these animals to fail to complete the atten-
tional set-shifting task.

Our results are consistent with previous animal and human
subject studies showing the behavior changes by MPH at differ-
ent doses (2,3,5,6). The potentiated NMDAR signaling by low-dose
MPH may underlie the enhanced recognition memory (24,27),
whereas the reduced glutamate signaling by high-dose MPH may
underlie the increased locomotion because NMDAR antagonists
profoundly stimulate locomotion in animals (32).

Norepinephrine Neurotransmission Mediates Potentiating
Effect of Low-Dose MPH on NMDARs

Given the positive effects of low-dose MPH on NMDARs and
cognitive behaviors, we next examined the molecular mecha-
nisms underlying low-dose MPH. It is known that MPH blocks NET
and DAT in the presynaptic terminals, resulting in elevated
synaptic levels of these neurotransmitters (3,9,10). To determine
whether dopaminergic or adrenergic neurotransmission is
involved, we examined NMDAR-mediated EPSCs in animals
treated with specific NET or DAT inhibitors. As shown in
Figure 4A, animals injected with maprotiline (20 mg/kg, intra-
peritoneal injection), a highly selective NET inhibitor (33), exhib-
ited enhanced NMDAR-mediated EPSCs (47%–57% increase,
n ¼ 11–12 cells/3 rats per group [F1,84 ¼ 42.6, p � .01, ANOVA]),
similar to what was found in animals injected with low-dose MPH.
Animals injected with a higher dose of maprotiline (50 mg/kg)
exhibited reduced NMDAR-mediated EPSCs (Figure S1 in
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Supplement 1). The dose-dependent effects of maprotiline are
parallel with the effects of MPH. In contrast, animals injected with
GBR-12909 (5 mg/kg, intraperitoneal injection), a highly selective
DAT inhibitor (34), showed unaltered NMDAR-mediated EPSCs
(n ¼ 6–9 cells/3 rats per group [F1,65 ¼ 1.76, p � .05, ANOVA])
(Figure 4B).

To confirm further that MPH regulates NMDAR responses by
preferentially targeting adrenergic neurotransmission, we pre-
treated animals with prazosin, an antagonist of α1-adrenergic
receptor (35), and yohimbine, an antagonist of α2-adrenergic
receptor (36). As shown in Figure 4C, blocking adrenergic
receptors with prazosin and yohimbine completely abolished
the effect of low-dose MPH on NMDAR-mediated EPSCs (�12% to
11% increase, n ¼ 8–10 cells/3 rats per group [F1,160 ¼ .29,
p � .05, ANOVA]). In contrast, when applying SCH 23390, a D1-
class receptor antagonist (37), and sulpiride, a D2-class receptor
antagonist (38), the enhancement of NMDAR-mediated EPSCs
by low-dose MPH remained the same (29%–60% increase,
n ¼ 8–9 cells/3 rats per group [F1,98 ¼ 76.5, p � .01, ANOVA])
(Figure 4D). These results suggest that low-dose MPH potentiates
NMDAR-mediated EPSCs primarily by inhibiting norepinephrine
transporter and activating adrenergic receptors.

Synaptosomal-Associated Protein 25 Mediates Enhancement
of NMDARs and Cognition by Low-Dose MPH

The potentiated NMDAR currents by low-dose MPH are
accompanied by elevated surface expression of NMDARs, suggest-
ing that the membrane delivery of NMDARs might be affected. It is
known that SNARE (soluble N-ethylmaleimide-sensitive factor
[NSF] attachment protein receptor) proteins are the key protein
family involved in the membrane fusion in eukaryotic cells (39). In
particular, synaptosomal-associated protein 25 (SNAP-25), a SNARE
protein, has been implicated in the incorporation of NMDARs to
postsynaptic membrane (40,41). We examined the role of SNAP-25
in the potentiation of surface NMDARs by low-dose MPH. Because
intravenous injection can reliably deliver TAT peptides into central
nervous system neurons (22,42,43), we gave animals an intra-
venous injection of the SNAP-25 blocking peptide (.6 pmol/g) 30
min before MPH administration. This peptide mimics the
N-terminal domain of SNAP-25 and disrupts the interaction of
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SNAP-25 with NSF, which is critical for the assembly and
disassembly cycle of SNARE complexes (21,44). As shown in
Figure 5A, two-way ANOVA analysis revealed a significant main
effect on treatments [F3,157 ¼ 25.7, p � .001]. Post hoc tests
indicated that the enhancing effect of low-dose MPH on NMDAR-
mediated EPSCs was blocked by the SNAP-25 blocking peptide
(2%–9% increase, n ¼ 8–10 cells/4 rats per group, p � .05) but not
a scrambled peptide (43%–77% increase, n ¼ 8–13 cells/4 rats per
group, p � .05). Biotinylation assays also showed that the
increasing effects of low-dose MPH on surface NMDAR subunits
was abolished by SNAP-25 blocking peptide (surface NR1, 9.8% �
10.4% decrease; surface NR2A, 27.4% � 9.7% decrease; surface
NR2B, 13.7% � 21.0% decrease; n ¼ 4 pairs, p � .05, ANOVA)
(Figure 5B,C) but not the scrambled peptide (surface NR1, 73.3%�
10.6% increase; surface NR2A, 117.2% � 43.8% increase; surface
NR2B, 218% � 47.9% increase; n ¼ 4 pairs, p � .01, ANOVA).
Taken together, these results suggest that SNAP-25 mediates the
enhanced exocytosis of NMDARs by low-dose MPH.

Next, we examined the role of SNAP-25 in MPH regulation of
cognitive functions. As shown in Figure 5D, in rats injected with
SNAP-25 peptide, low-dose MPH failed to enhance TORM (DR, SNAP-
25 peptide � MPH, 29.4% � 5.4%, n ¼ 5, control peptide � MPH,
48.3% � 5.3%, n ¼ 6; p � .05, t test). Injection of SNAP-25 peptide
blocked the beneficial effect of low-dose MPH in the attentional set-
shifting task, resulting in more trials to achieve the criterion in
extradimensional shift (trials to criterion, control peptide � MPH, 8.6
� .7, n ¼ 5; SNAP-25 peptide � MPH, 12.0 � .8, n ¼ 5; p � .05,
t test).

To avoid potential nonspecific effects with the systemic
administration of SNAP-25 peptide, we performed stereotactic
injection of peptides to PFC bilaterally, followed by intraperito-
neal MPH injection. Electrophysiologic recordings showed that
PFC infusion of SNAP-25 peptide (3 pmol/side) blocked the
increase of NMDAR-mediated EPSCs by low-dose MPH (SNAP-25
peptide, �10% increase; control peptide, �55% increase;
n ¼ 16–30 cells/4 rats per group [F3,382 ¼ 22.3, p � .001, ANOVA])
(Figure 6A). Behavioral tests indicated that PFC infusion of SNAP-
25 peptide blocked the increase of TORM by low-dose MPH (DR,
SNAP-25 peptide, �0-fold increase; control peptide, � .8-fold
increase; n ¼ 5 pairs [F3,20 ¼ 5.89, p � .01, ANOVA]) (Figure 6B).
Figure 4. Low-dose methylphenidate (MPH) potentiates
N-methyl-D-aspartate receptor–mediated excitatory
postsynaptic currents (NMDAR-EPSC) via norepinephrine
reuptake inhibition and adrenergic receptor activation.
(A, B) Summarized input-output curves of NMDAR-EPSC
in prefrontal cortex pyramidal neurons from rats treated
with saline, maprotiline, 20 mg/kg, intraperitoneal injec-
tion (A), or GBR-12909, 5 mg/kg, intraperitoneal injection
(B). Inset shows representative traces of NMDAR-EPSC.
Scale bar ¼ 50 pA, 200 msec. **p � .01. (C) Summarized
input-output curves of NMDAR-EPSC in saline-injected
versus MPH-injected (.5 mg/kg, intraperitoneal injection)
rats pretreated with prazosin (Pra) and yohimbine (Yoh)
(Pra, 1 mg/kg, and Yoh, 5 mg/kg, intraperitoneal injec-
tion, injected .5 hour before MPH injection). Inset shows
representative NMDAR-EPSC traces. Scale bar ¼ 50 pA,
100 msec. (D) Summarized input-output curves of
NMDAR-EPSC in saline-injected versus MPH-injected rats
pretreated with SCH 23390 (SCH) and sulpiride (Sul)
(SCH, 1 mg/kg, and Sul, 50 mg/kg, intraperitoneal
injection, injected .5 hour before MPH injection). Inset
shows representative traces. Scale bar ¼ 50 pA, 100
msec. **p � .01.
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These data suggest that SNAP-25 in the PFC is critical for the
potentiation of NMDARs and cognition by low-dose MPH.

Because protein kinase C (PKC) phosphorylation of SNAP-25
could affect the surface expression of NMDARs (40), we also
examined the involvement of PKC in MPH effects. Low-dose MPH
failed to enhance NMDAR-mediated EPSCs in the presence of a
PKC inhibitor, chelerythrine (3 mg/kg, intraperitoneal injection) (45)
(�7% increase, n ¼ 10–12 cells/3 rats per group [F1,100 ¼ .59, p �
.05, ANOVA]) (Figure S2 in Supplement 1). These results suggest
that PKC, which may be activated by low-dose MPH, is important
for facilitating SNAP-25-dependent NMDAR surface delivery.
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Low-Dose MPH Rescues Impaired NMDAR and Cognitive
Function in Animals Exposed to Repeated Stress

Because low-dose MPH enhances NMDAR function and mem-
ory processes in naïve animals, we examined whether low-dose
MPH restores impaired NMDAR and cognitive function in animals
exposed to repeated stress (24). A significant main effect was
found in treatment groups [F5,277 ¼ 159.8, p � .001, two-way
ANOVA] (Figure 7A). Post hoc tests indicated that NMDAR-
mediated EPSCs were markedly decreased in PFC pyramidal
neurons from young male rats exposed to repeated (7 days)
restraint stress (76%–96% reduction, n ¼ 13–17 cells/4 rats per
+ sc pep+
MPH

NR2B

e

NR2B

**

Rev3DS

*

Figure 5. Synaptosomal-associated protein 25 (SNAP-
25) participates in the potentiation of N-methyl-D-aspar-
tate receptor–mediated excitatory postsynaptic currents
(NMDAR-EPSC) and cognitive functions by low-dose
MPH. (A) Summarized input-output curves of NMDAR-
EPSC in saline-injected versus MPH-injected
(.5 mg/kg, intraperitoneal injection) rats pretreated with
SNAP-25 blocking peptide (SNAP-25 pep, .6 pmol/g,
intravenous injection) or a scrambled peptide (sc pep,
.6 pmol/g, intravenous injection). Inset shows represen-
tative EPSC traces. Scale bar ¼ 50 pA, 200 msec.
*p � .05. Immunoblots (B) and quantification analysis
(C) of the surface and total NMDAR subunits in rat
prefrontal cortex slices from saline-injected versus MPH-
injected rats pretreated with SNAP-25 blocking peptide
or a scrambled peptide. **p � .01. Bar graphs show the
discrimination ratio of temporal order recognition mem-
ory tasks (D) and number of trials to criterion at each
discrimination stage of the attentional set-shifting task
(E) in MPH-injected (.5 mg/kg, intraperitoneal injection)
animals pretreated with a scrambled peptide or SNAP-25
blocking peptide. CD, compound discrimination; EDS,
extradimensional shift; IDS, intradimensional shift; Rev,
reversal discrimination; SD, simple discrimination. *p
� .05.
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group, p � .001), consistent with our previous results (29,30).
A single injection of low-dose MPH (.5 mg/kg, intraperitoneal
injection) after the repeated stress exposure restored NMDAR-
mediated EPSCs to the control level (n = 13–17 cells/4 rats per
group, p � .05). The recovery was blocked in animals pretreated
with SNAP-25 blocking peptide (.6 pmol/g, intravenous injection,
37%–81% reduction, n = 8–18 cells/3 rats per group, p � .001).

Behavioral studies found that the repeatedly stressed rats had
impaired TORM, which was recovered by a single injection of low-
dose MPH (DR, stress � saline, 6.6% � 7.0%, n = 7; stress � MPH,
56.3% � 11.4%, n = 9 [F2,23 = 5.7, p � .01, ANOVA]) (Figure 7B).
The recovering effect of low-dose MPH was abolished by
pretreatment with SNAP-25 blocking peptide (DR, stress �
SNAP-25, 3.7% � 10.9%, n ¼ 4; stress � SNAP-25 � MPH, 1.2%
� 5.8%, n ¼ 6, p � .05). The total exploration time in the two
sample phases and the subsequent test trial was unchanged by
any of these treatments (p � .05, ANOVA) (Figure 7C). These
results suggest that low-dose MPH is capable of rescuing the
impaired NMDAR function and cognitive deficits in stressed
animals through a mechanism involving SNAP-25.
Discussion

Despite the widespread use of MPH as a cognitive enhancer,
little is known about the causal mechanism underlying its
behavioral actions. The dopamine and adrenergic system has
been primarily studied for MPH; however, considering that the
glutamatergic system is critically involved in synaptic plasticity
and cognitive processes (16,25), regulation of glutamate signaling
might underlie the neuronal mechanism of MPH. Because MPH is
commonly prescribed for the treatment of ADHD in children and
adolescents, it is important to use adolescent rats to study the
effect of MPH exposure in early life. In the present study, we
found that a low dose of MPH that yields clinically relevant
plasma levels (3) remarkably potentiated NMDAR-mediated syn-
aptic responses and the surface expression of NMDARs in
adolescent rats. We also found that a high dose of MPH
substantially decreased glutamatergic transmission, via a mech-
anism involving both decreasing presynaptic glutamate release
probability and reducing postsynaptic glutamate receptor surface
expression. In contrast, a previous study showed that 1 hour after
a single injection of MPH (1 mg/kg, intraperitoneal injection),
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Figure 6. Prefrontal cortex (PFC) infusion of synaptosomal-associated protein 2
induced enhancement of N-methyl-D-aspartate receptor–mediated excitatory po
Summarized input-output curves of NMDAR-EPSC (A) and bar graph (mean � SEM
(B) in saline (Sal)-injected versus MPH-injected (.5 mg/kg, intraperitoneal injectio
blocking peptide (pep) (3 pmol/site). Inset shows representative excitatory postsy
NMDAR-mediated currents and NMDAR total protein levels were
decreased in the PFC of juvenile rats (p15–25) (46). We have not
seen such reducing effects with MPH (1 mg/kg) injection.

In parallel with the dose-dependent bidirectional effects of MPH
on PFC glutamatergic signaling, our behavioral studies found that
low-dose MPH enhanced TORM and attentional set-shifting,
whereas high-dose MPH impaired TORM and elevated locomotor
activity. These results are consistent with previous work in animals
and human subjects showing that the therapeutic dose of MPH
effectively improves cognitive functions (2,3), whereas overdose of
MPH is associated with aggression and hyperactivity (4). Given that
children with ADHD exhibit prefrontal hypoactivity (15,16), the
elevated NMDAR function by low-dose MPH might underlie its
beneficial effects on memory, attention, and other cognitive
aspects. However, because NMDAR antagonists, such as phencycli-
dine or ketamine, can lead to the formation of psychotic symptoms,
including hyperlocomotion (32,47), the reduced glutamate signal-
ing by high-dose MPH might underlie its psychosis-inducing effects.

It is known that MPH acts as a NET and DAT inhibitor, and our
data indicate that low-dose MPH potentiates NMDAR functions
mainly through the norepinephrine system. Consistently, MPH is
shown to have higher affinity for NET than DAT in vitro (48), to
affect norepinephrine preferentially at low doses in vivo (49), and
to occupy NET significantly at clinically relevant doses in humans
(10). The norepinephrine system has been implicated in many
PFC functions, including working memory, attention, and emo-
tional control (50,51). An in vitro study suggested that the
enhancement of NMDAR-mediated EPSCs by bath application of
MPH (50 μmol/L) in PFC slices is mediated by sigma-1 receptors
instead of adrenergic or dopamine receptors (31). The incon-
sistency may be due to different routes of drug administration
and different MPH concentrations.

Because low-dose MPH increases NMDAR surface expression,
we have examined the potential molecule downstream of
adrenergic receptors that is involved in NMDAR exocytosis. The
SNARE proteins, comprising SNAP-25/23, syntaxins, and synapto-
brevin/vesicle-associated membrane proteins, form SNARE com-
plexes in the late stage of synaptic vesicle exocytosis mediating
vesicle docking and fusion (39). A key component of SNARE
complex expressed in excitatory neurons (52), SNAP-25 partic-
ipates in the delivery of NMDAR vesicles at postsynaptic sites
(21,40,41). More importantly, dysfunction of SNAP-25 is linked to
various human mental disorders, such as schizophrenia, ADHD,
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and early-onset bipolar disorder (53–55). Mice carrying a deletion
of SNAP-25 gene have been used as an ADHD animal model (56).
In the present study, we demonstrate that SNAP-25 mediates the
increase of NMDAR exocytosis by low-dose MPH.

In addition to enhancing cognitive function, MPH is able to
combat stress (57). Chronic or severe stress is a trigger for many
mental illnesses (58). Previous studies have found that repeated
stress suppresses PFC glutamatergic signaling, resulting in cogni-
tive impairment (24,26,59,60). In this study, we found that low-
dose MPH restored impaired NMDAR function and object recog-
nition memory in animals exposed to repeated stress through a
mechanism dependent on SNAP-25-mediated exocytosis of
NMDARs. This study provides a molecular mechanism for MPH
to be used as a potential therapeutic strategy for stress treatment.

A remaining question is the long-term effect of MPH on
glutamatergic transmission and PFC-dependent cognitive func-
tion. Previous studies suggested that glutamatergic pathways are
involved in short-term and long-term MPH regulation of locomo-
tion in adult rats (61), and exposing rats to MPH during the
adolescent period results in increased stress reactivity (7).
Whether PFC network activity is altered after long-term exposure
to different doses of MPH is a subject for future study.
www.sobp.org/journal
In conclusion, the present study shows that administration of
low-dose MPH potentiates NMDAR trafficking and function,
enhances PFC-mediated cognition, and counteracts the detrimen-
tal effects of repeated stress in adolescent rats via a mechanism
involving adrenergic receptors and SNAP-25. In contrast, admin-
istration of high-dose MPH suppresses PFC glutamatergic trans-
mission and induces hyperlocomotion. This study provides a
potential mechanism underlying the cognitive-enhancing effects
of low-dose MPH and the psychosis-inducing effects of high-
dose MPH.
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