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Background: The dopamine D4 receptors in prefrontal cortex (PFC) play a key role in mental health and disorders.
Results: D4 activation caused a bi-directional, homeostatic regulation of glutamatergic responses in rats exposed to acute or
chronic stress.
Conclusion: The altered synaptic excitation in stress conditions is restored by D4 signaling in PFC.
Significance: It provides a potential mechanism for the role of D4 in stress-related neuropsychiatric disorders.

The prefrontal cortex (PFC), a key brain region for cognitive
and emotional processes, is highly regulated by dopaminergic
inputs. The dopamine D4 receptor, which is enriched in PFC,
has been implicated in mental disorders, such as attention defi-
cit-hyperactivity disorder and schizophrenia. Recently we have
found homeostatic regulation ofAMPA receptor-mediated syn-
aptic transmission in PFC pyramidal neurons by the D4 recep-
tor, providing a potential mechanism for D4 in stabilizing corti-
cal excitability. Because stress is tightly linked to adaptive and
maladaptive changes associated with mental health and disor-
ders, we examined the synaptic actions ofD4 in stressed rats.We
found that neural excitability was elevated by acute stress and
dampened by repeated stress. D4 activation produced a potent
reduction of excitatory transmission in acutely stressed animals
and a marked increase of excitatory transmission in repeatedly
stressed animals. These effects of D4 targeted GluA2-lacking
AMPA receptors and relied on the bi-directional regulation of
calcium/calmodulin kinase II activity. The restoration of PFC
glutamatergic transmission in stress conditions may enable D4
receptors to serve as a synaptic stabilizer in normal and patho-
logical conditions.

The dopaminergic system in prefrontal cortex (PFC)2 plays a
key role in regulating high level cognitive functions, such as
working memory (1, 2). Dopamine D4 receptors, which are
largely restricted to PFCneurons (3, 4), are critically involved in
PFC functions both under normal condition and in many neu-
ropsychiatric disorders (5, 6). For example, attention deficit
hyperactivity disorder and the responsiveness to its treatment
have been associated with a D4 gene polymorphism that weak-

ens D4 receptor function (7–10). The highly effective antipsy-
chotic drug used in schizophrenia treatment, clozapine, has a
high affinity to D4 receptors (11, 12). Preclinical studies also
indicate that D4 receptor antagonists alleviate stress-induced
working memory problems in monkeys (13) and ameliorate
cognitive deficits caused by psychotomimetic drugs (14). Mice
lacking D4 receptors exhibit supersensitivity to psychomotor
stimulants, reduced exploration of novel stimuli, cortical
hyperexcitability, and juvenile hyperactivity and impulsive
behaviors associated with attention deficit hyperactivity disor-
der (15–18).
To understand the role of D4 in mental health and disorders,

it is important to elucidate the molecular and cellular mecha-
nisms underlying the impact of D4 on cortical excitability and
working memory. It has been proposed that glutamate recep-
tor-mediated synaptic transmission that controls PFCneuronal
activity is crucial for workingmemory (19). Dysfunction of glu-
tamatergic transmission is considered as the core feature and
fundamental pathology of mental disorders (20–22). Recently
we have demonstrated that D4 stimulation causes a profound
depression of AMPA receptor (AMPAR) responses in PFC
pyramidal neurons when their activity is elevated in vitro and
causes a marked potentiation of AMPAR responses when their
activity is dampened in vitro (23, 24). It suggests that D4 recep-
tors may use the homeostatic control of glutamatergic trans-
mission to stabilize the activity of PFC circuits.
The PFC is one of the primary targets of stress hormones

(25). Stress has profound and divergent effects on the body and
the brain. Acute stress is essential for adaptation and mainte-
nance of homeostasis, whereas chronic stress often exacerbates
deficiencies in emotional and cognitive processes associated
with psychiatric disorders, such as depression, anxiety, and
posttraumatic stress disorder (25, 26). In this study, we sought
to determine whether animals exposed to acute or repeated
behavioral stress have altered neuronal activity in vivo and
whetherD4 exerts an activity-dependent regulation of glutama-
tergic transmission in PFC pyramidal neurons from stressed
animals. Knowledge gained from this study should help us
understand the role of D4 in the adaptive and maladaptive
changes linked to stress.
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EXPERIMENTAL PROCEDURES

Stress Paradigm—All experiments were conducted in
accordance to the Institutional Animal Care and Use Commit-
tee (IACUC) of the State University of New York at Buffalo.
Juvenile (3–4 weeks old) Sprague-Dawley male rats were used
in this study. For acute stress, rats were restrained in air-acces-
sible cylinders for 2 h (10:00 a.m. to 12:00 p.m.) as described
previously (27, 28). For repeated stress, rats were restrained
daily (2 h) for 5–7 days.
Electrophysiological Recording in Slices—PFC slice prepara-

tion procedures were similar to what was described previously
(29). In brief, animals were anesthetized by inhaling 2-bromo-
2-chloro-1,1,1-trifluoroethane (1 ml/100 g; Sigma) and decap-
itated. Brains were quickly removed and sliced (300 �m) with a
Leica VP1000S Vibrotome while bathed in a HEPES-buffered
salt solution. Slices were then incubated for 1–5 h at room tem-
perature (22–24 °C) in artificial cerebrospinal fluid (ACSF) (130
mM NaCl, 26 mM NaHCO3, 1 mM CaCl2, 5 mM MgCl2, 3 mM

KCl, 10 mM glucose, 1.25 mMNaH2PO4) bubbled with 95% O2,
5% CO2.
Standard voltage clamp recording techniques were used to

measure AMPAR-EPSC in layer V PFC pyramidal neurons as
described before (23, 28). Neurons were visualized with a �40
water-immersion lens and illuminated with near infrared (IR)
light, and the image was captured with an IR-sensitive CCD
camera. Recordings were obtained using a Multiclamp 700A
amplifier (Axon Instruments). Tight seals (2–10 gigohms) were
obtained by applying negative pressure. The membrane was
disrupted with additional suction, and the whole-cell configu-
ration was obtained. Neurons were held at�70mV, and EPSCs
were evoked by stimulating the neighboring neurons with a
bipolar tungsten electrode (FHC, Inc.). The internal solution
contained 130 mM cesium methanesulfonate, 10 mM CsCl, 4
mM NaCl, 1 mM MgCl2, 10 mM HEPES, 5 mM EGTA, 2.2 mM

QX-314, 12 mM phosphocreatine, 5 mM MgATP, 0.5 mM

Na2GTP, 0.1 mM leupeptin, pH 7.2–7.3, 265–270 mosM. To
record miniature EPSCs (mEPSCs) in the slice, 1 mM MgCl2-
containing ACSF (tetrodotoxin added) was used.
Whole-cell current clamp techniques were used to measure

action potential firing (30). During the recording of spontane-
ous firing, PFC slices were bathed in a modified ACSF with
reduced Mg2� (0.5 mM) and slightly elevated K� (3.5 mM) at
room temperature. This modified ACSF is more similar to in
vivo rodentCSF than standardACSF (31). The internal solution
contained 100 mM potassium gluconate, 20 mM KCl, 10 mM

HEPES, 4 mM MgATP, 0.3 mM NaGTP, 10 mM phosphocrea-
tine, and 0.1mM leupeptin, pH 7.2–7.3, 265–270mosM. A small
depolarizing current was applied to adjust the interspike poten-
tial to �60 mV.

Dopamine receptor ligands PD168077 maleate (Tocris) and
the second messenger reagents KN-93, KN-92, purified active
CaMKII� protein (74 kDa; Abcam ab60899) and CaM proteins
(Calbiochem) were made up as concentrated stocks in water or
dimethyl sulfoxide and stored at�20 °C or�80 °C. Stockswere
thawed and diluted immediately before use. Reagents were dia-
lyzed into neurons through the patch electrode for 20 min
before electrophysiological recordings were started. Data anal-

yses were performed with the Clampfit software (Axon Instru-
ments). Experiments with two groups were analyzed statisti-
cally using Student’s t tests. Experiments with more than two
groups were subjected to one-way ANOVA followed by post
hoc Tukey tests. Miniature synaptic currents were analyzed
withMini Analysis Program (Synaptosoft, Leonia, NJ). Statisti-
cal comparisons of mEPSCs weremade using the Kolmogorov-
Smirnov test.
Western Blotting—After treatment, slices were homogenized

in boiling 1% SDS, followed by centrifugation (13,000 � g, 20
min). The supernatant fractions were subjected to 7.5% SDS-
polyacrylamide gels and transferred to nitrocellulose mem-
branes. The blots were blocked with 5% nonfat dry milk for 1 h
at room temperature followed by incubation with various pri-
mary antibodies of CaMKII (1:1000; Santa Cruz Biotechnology
sc-9035) and Thr(P)286-CaMKII (1:1000; Santa Cruz Biotech-
nology sc-12886). After incubation with horseradish peroxi-
dase-conjugated secondary antibodies (Sigma-Aldrich), the
blots were exposed to the enhanced chemiluminescence sub-
strate (Amersham Biosciences). Quantification was obtained
from densitometric measurements of immunoreactive bands
on film using ImageJ software.

RESULTS

Neuronal Excitability, Which Is Elevated by Acute Stress and
Dampened byRepeated Stress, Is Restored byD4Activation—To
compare overall excitability of PFC circuits in control versus
stressed animals, we measured the spontaneous action poten-
tial firing, which helps to reveal the circuit excitability changes
induced by altered synaptic drive onto pyramidal neurons (32).
As shown in Fig. 1A, compared with neurons from nonstressed
(NS) control rats, the firing rate was significantly increased in
neurons from acutely stressed (AS) animals (NS: 1.14 � 0.25
Hz, n � 9; AS: 2.04 � 0.31 Hz, n � 10, p � 0.01, t test). On the
other hand, a significant reduction in the firing rate was
observed in repeatedly stressed (RS) animals (Fig. 1B, NS:
1.25 � 0.41 Hz, n � 8; RS: 0.37 � 0.10 Hz, n � 11, p � 0.01, t
test). These data indicate that the excitability of PFC pyramidal
neurons is elevated by acute stress and dampened by chronic
stress. Thus, stress provides a physiological condition that has
bi-directional changes in neuronal activity in vivo.
We then examined the impact of D4 receptor activation on

the excitability of PFC pyramidal neurons from stressed ani-
mals. As shown in Fig. 1,C andD, application of theD4 receptor
agonist PD168077 (40 �M) produced a significant reducing
effect on the firing rate in acutely stressed animals (control:
2.14 � 0.04 Hz, PD: 1.33 � 0.03 Hz, n � 7). On the other hand,
PD168077 significantly enhanced the firing rate in repeatedly
stressed animals (control: 0.39 � 0.02 Hz, PD: 0.97 � 0.04 Hz,
n� 5). Thus, the PFCneuronal excitability has been restored by
D4 in stress conditions.
D4 Restores the Excitatory Synaptic Transmission in Stressed

Animals—Because D4 stimulation induces an activity-depen-
dent regulation of glutamatergic transmission in vitro (23), we
next examined the effect of D4 in PFC neurons from animals
whose neural activity has beenperturbed by in vivo stressors. As
shown in Fig. 2, A–C, the basal evoked AMPAR-EPSC ampli-
tude was markedly increased by acute stress (NS: 109.8 � 5.1
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pA, n � 12; AS: 237.9 � 15.1 pA, n � 16; p � 0.001, ANOVA)
andwas substantially decreased by repeated stress (NS: 151.4�
10.5 pA, n� 16; RS: 80.4� 4.4 pA, n� 19, p� 0.001, ANOVA).
Application of PD168077 (40 �M) slightly reduced AMPAR-

EPSC in nonstressed animals (23.0� 3.1% reduction,n� 7, p�
0.05, ANOVA), and this reducing effect of PD168077 was sig-
nificantly augmented in acutely stressed animals (49.2 � 4.5%
reduction, n � 16, p � 0.001, ANOVA). On the other hand,

FIGURE 1. In vivo stress alters the excitability of PFC pyramidal neurons. A and B, representative spontaneous firing recordings and scatter plots of firing
rates of PFC pyramidal neurons from nonstressed versus acutely stressed (A) or repeatedly stressed (B) rats. Scale bars, 20 mV, 2 s. *, p � 0.01, t test. C and D,
representative spontaneous firing recordings and scatter plots of firing rates of PFC pyramidal neurons showing the effect of PD168077 (40 �M) in stressed
(acutely or repeatedly) rats. Scale bars, 20 mV, 2 s. *, p � 0.01, t test.

FIGURE 2. The stress-induced alteration of glutamatergic transmission is restored by D4 activation. A and B, plot of normalized AMPAR-EPSC showing the
effect of PD168077 (40 �M) in nonstressed versus animals exposed to acute stress (A) or repeated stress (B). C, Bar graphs (mean � S.E. (error bars)) showing the
amplitude of EPSC in PFC neurons from nonstressed, acutely stressed, or repeatedly stressed animals before and after PD168077 application. #, p � 0.05; *, p �
0.001, ANOVA. D and F, cumulative distribution plot showing the effect of PD168077 (40 �M) on miniature EPSC amplitude and interevent interval in animals
exposed to acute stress (D) or repeated stress (F). Inset, representative mEPSC traces. Scale bar, 20 pA, 1 s. E and G, bar graphs (mean � S.E.) showing the
amplitude and frequency of mEPSC in PFC neurons from different groups (NS, AS, RS) before and after PD168077 application. *, p � 0.001, ANOVA.
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PD168077 significantly enhanced AMPAR-EPSC in repeatedly
stressed animals (53.6 � 6.5% enhancement, n � 14, p � 0.001,
ANOVA). Thus, the excitatory synaptic strength has been
brought back to the control level by D4 in stress conditions
(AS�PD: 120.8 � 8.3 pA, n � 16; RS�PD: 123.6 � 7.3 pA, n �
14).
We next measured AMPAR-mediated mEPSC, a response

from quantal release of single glutamate vesicles. Acute stress
caused a significant increase of the mEPSC amplitude (NS:
12.1 � 0.6 pA; AS: 17.2 � 2.0 pA, p � 0.001, ANOVA), which
was recovered to the nonstressed level by PD168077 (10.9� 0.3
pA, 2.1� 0.2 Hz, n� 8, Fig. 2,D and E). ThemEPSC frequency
was not significantly changed by acute stress, consistent with
our previous report (27). On the other hand, themEPSC ampli-
tude and frequency were significantly reduced in animals
exposed to repeated stress (9.5 � 0.3 pA, 1.5 � 0.3 Hz, n � 7),
andPD168077 restoredmEPSC similar to that observed in non-
stressed animals (14 � 0.5 pA, 2.8 � 0.3 Hz, n � 7, Fig. 2, F and
G). Taken together, these results suggest thatD4 activation pro-
vides a homeostatic regulation of excitatory synaptic transmis-
sion in stressed animals.
The Homeostatic Effect of D4 Targets Mainly GluA2-lacking

AMPA Receptors—Because GluA2-containing and GluA2-
lacking AMPAR channels have distinct channel conductance,
open probability, Ca2� permeability and rectification, we
examined whether D4 receptors differentially affect AMPAR
subunits in stress conditions. It has been found that GluA2-
lacking AMPARs have prominent rectification (33), and
changes in GluA2-lacking AMPARs alter the inward rectifica-
tion due to voltage-dependent blockade of intracellular poly-
amine (34). Thus, rectification index (RI) of AMPAR responses
(ratio of the current amplitude at �60 mV to that at �40 mV)
was measured with a spermine (100 �M)-containing intracellu-
lar solution (35). As shown in Fig. 3A, the RI in acutely stressed
animals was much bigger than that in nonstressed control ani-
mals (NS: 2.3 � 0.34, n � 7; AS: 4.0 � 0.39, n � 11; p � 0.001,
ANOVA), suggesting that acute stress may predominantly
increaseGluA2-lackingAMPARs at the synapse.Application of
PD168077 (40 �M) reduced the RI back to the control level
(2.4 � 0.2, n � 11), indicating that D4 activation removes the
synaptic GluA2-lacking AMPARs that are previously delivered
by acute stress. On the other hand, in repeatedly stressed ani-
mals, the RI was unchanged (NS: 2.1� 0.2, n� 9; RS: 2.2� 0.2,
n � 9, p � 0.05, ANOVA) but was markedly increased by
PD168077 (4.1 � 0.6, n � 8), suggesting that D4 increases the
synaptic recruitment of GluA2-lacking AMPARs.
To investigate further the target of D4, we used NASPM (100

�M), a selective blocker of GluA2-lacking AMPA receptors
(36). As shown in Fig. 3, C andD, NASPM had a minimal effect
on basal AMPAR-EPSC in nonstressed rats (�12.9� 4.2%, n�
8, p � 0.05, t test), consistent with the low level of synaptic
GluA2-lacking AMPARs at the base-line condition as reported
previously (37). The NASPM sensitivity was significantly
increased in acutely stressed animals (�30.3� 3.2%, n� 9, p�
0.001, t test) and was unchanged in repeatedly stressed animals
(�11.2 � 2.2%, n � 11, p � 0.05, t test), consistent with the
delivery of GluA2-lacking AMPARs by acute stress.

In acutely stressed animals, PD168077 significantly reduced
AMPAR-EPSC (Fig. 3E, 52.4 � 7.2% reduction, n � 9), and
subsequent application of NASPM failed to alter AMPAR-
EPSC (�11.1 � 1.7%, n � 9). On the other hand, in repeatedly
stressed animals, PD168077 significantly enhanced AMPAR-
EPSC (Fig. 3F, 47.7 � 9.4% enhancement, n � 11), and subse-
quent application ofNASPMmarkedly reducedAMPAR-EPSC
(�37.9 � 5.1%, n � 11). This suggests that the D4-sensitive
EPSC is mediated by GluA2-lacking AMPARs in both stress
conditions.
To test further whether the change in AMPAR trafficking is

involved inD4 regulation of synaptic transmission at stress con-
ditions, we carried out surface biotinylation assays. As shown in
Fig. 3,G andH, PD168077 caused amarked reduction of surface
GluA1 expression in PFC slices from acutely stressed animals,
but significantly increased the level of surface GluA1 in PFC
slices from repeatedly stressed animals (NS: �29.6� 2.6%, n�
11; AS:�55.9� 7.0%, n� 7; RS: 46.9� 11.2%, n� 10; p� 0.01,
ANOVA). The biochemical evidence is consistent with what
was observed in electrophysiological recordings.
CaMKII Is Involved in the D4 Regulation of AMPAR Trans-

mission in Stressed Animals—Our previous studies have shown
that D4 exerts an activity-dependent bi-directional regulation
of CaMKII (38), which is critical for the D4-induced homeo-
static regulation of AMPARs in vitro (23, 24). Thus, we tested
the role of CaMKII in the D4 actions in stressed animals. As
shown in Fig. 4, A and B, in PFC slices from nonstressed ani-
mals, application of PD168077 (40 �M, 10 min) reduced the
level of activated (Thr286-phosphorylated) CaMKII (32.1 �
7.1% reduction, n � 5). In acutely stressed animals, the basal
level of activated CaMKII was elevated (1.59 � 0.19-fold of
control, n � 5), and the reducing effect of PD168077 was sig-
nificantly augmented (71.4 � 7.3% reduction, n � 5). Con-
versely, in repeatedly stressed animals, the basal level of acti-
vated CaMKII was unchanged (1.12 � 0.12-fold of control, n �
6), whereas PD168077 significantly increased the level of acti-
vated CaMKII (61.4 � 10.5% increase, n � 6). This bi-direc-
tional regulation of CaMKII activity by D4 receptors provides a
basis for the dual effects of D4 on AMPAR transmission in PFC
pyramidal neurons from acutely versus chronically stressed
animals.
To examine whether the D4 reduction of AMPAR-EPSC in

acutely stressed animals is through suppression of CaMKII, we
dialyzed neurons with an EGTA-free internal solution contain-
ing purified active CaMKII� protein (0.6 �g/ml), calmodulin
(30 �g/ml) and CaCl2 (0.3 mM). The active CaMKII protein
itself did not significantly alter the basal EPSC (�7.8 � 1.7%,
n � 6), which is likely due to the high level of CaMKII in these
cells. As shown in Fig. 5A, the reducing effect of PD168077 on
AMPAR-EPSC was largely blocked by intracellular infusion of
the active CaMKII protein (6.2 � 2.1% reduction, n � 9, Fig.
5C), but not the heat-inactivated CaMKII protein (46.4 � 3.9%
reduction, n � 11; p � 0.001, t test, Fig. 5C).
To examine whether the D4 enhancement of AMPAR-EPSC

in repeatedly stressed animals is through stimulation of
CaMKII, we dialyzed the CaMKII inhibitor, KN-93 (20 �M).
KN-93 itself did not significantly alter the basal EPSC (�7� 1.4%,
n� 7), which is likely due to the low level of CaMKII in these cells.
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As shown in Fig. 5B, the enhancing effect of PD168077 on
AMPAR-EPSCwas blocked by KN-93 (3.0 � 3.9% enhancement,
n � 9, Fig. 5C), but not the inactive analog KN-92 (20 �M, 52.3 �
6.1% enhancement, n � 9; p � 0.001, t test, Fig. 5C).

Finally, we examined the role of CaMKII in D4 regulation of
neuronal excitability in stressed animals. As shown in Fig. 6, in
animals exposed to acute stress, the reducing effect of
PD168077 on spontaneous action potential firing was largely

FIGURE 3. D4 targets GluA2-lacking AMPARs in stressed animals. A and B, bar graphs showing the rectification index of AMPAR-EPSC in PFC neurons from
nonstressed, acutely stressed (A), or repeatedly stressed (B) animals before and after PD168077 (40 �M) application. Insets, representative EPSC traces at �40
mV and �60 mV. Scale bar, 50 pA, 20 ms, p � 0.001, ANOVA. C and D, dots plots showing the amplitude of AMPAR-EPSC in PFC neurons from nonstressed,
acutely stressed (C) or repeatedly stressed (D) animals before and after NASPM (100 �M) application. Insets, representative EPSC traces. Scale bar, 50 pA, 20 ms.
*, p � 0.001, t test. E and F, plot of AMPAR-EPSC showing the effect of PD168077 and subsequent NASPM in animals exposed to acute stress (E) or repeated stress
(F). G and H, immunoblots of surface and total GluA1 subunit and quantification of the surface GluA1 in PFC slices from nonstressed, acutely stressed, or
repeatedly stressed animals without or with PD168077 treatment. *, p � 0.01, ANOVA. Error bars indicate mean � S.E.
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blocked by intracellular infusion of the active CaMKII protein
(0.6 �g/ml, control: 2.16 � 0.1 Hz, PD: 2.03 � 0.08 Hz, n � 7),
but not the GST control (control: 2.18 � 0.14 Hz, PD: 1.07 �
0.08 Hz, n � 7; p � 0.01, t test). On the other hand, in animals
exposed to repeated stress, the enhancing effect of PD168077
on the firing rate was blocked by KN-93 (20�M, control: 0.44�
0.03 Hz, PD: 0.49 � 0.04 Hz, n � 7), but not the inactive analog
KN-92 (control: 0.45 � 0.04 Hz, PD: 1.02 � 0.07 Hz, n � 6; p �
0.01, t test).
Taken together, these results suggest that D4 restores gluta-

matergic transmission in stress conditions through bi-direc-
tional regulation ofCaMKII activity, which contributes the dual
regulation of neuronal excitability by D4 receptors.

DISCUSSION

Stress serves as a key controller for neuronal responses that
underlie behavioral adaptation, as well as maladaptive changes
that lead to cognitive and emotional disturbances in stress-re-
lated mental disorders (26). Corticosterone, the major stress
hormone, has been found to exert a complex effect on PFC
excitatory synapses and PFC-mediated behaviors (25, 39).
Acute stress induces synaptic potentiation by increasing sur-
face delivery of AMPARs and NMDARs via glucocorticoid/
SGK/Rab4 signaling, resulting in enhanced working memory
performance (27, 28, 40). Conversely, chronic stress induces
dendritic shortening, spine loss, and impairment in cognitive
flexibility and perceptual attention (41–43). Our recent study
has found that the detrimental effect of repeated stress on cog-
nition is causally linked to the ubiquitin/proteasome-mediated
degradation of AMPAR and NMDAR subunits and the sup-
pression of glutamatergic transmission in PFC (44). In addition,
the alteration of RNA editing of AMPAR subunits (45, 46) is
potentially another mechanism underlying the effects of stress.
In this study, we have found that the spontaneous action

potential firing is bi-directionally changed by acute versus
repeated stress, suggesting that the synaptic drive onto PFC
pyramidal neurons is altered by stress, leading to the change in
PFC circuit excitability. Activation of D4 reduces the potenti-
ated AMPAR responses in acutely stressed animals and
enhances the depressed AMPAR responses in repeatedly
stressed animals. The restoration of synaptic strength to the
control level by D4 in stress conditions supports the notion that

D4 serves as a homeostatic synaptic factor to stabilize cortical
excitability (23, 24).
AMPA receptors are tetramers assembled by GluA1–4 sub-

units. Different populations of AMPARs have distinct proper-
ties and regulatory mechanisms. GluA2-containing AMPARs
are dominant in glutamatergic synapses of neocortex and hip-
pocampus (47, 48), whereasGluA2-lacking AMPARs can be

FIGURE 4. D4 activation exerts a bi-directional regulation of CaMKII activ-
ity in stressed animals. A, representative immunoblots of p-CaMKII and total
CaMKII in lysates of PFC slices incubated without or with PD168077 (40 �M, 10
min) from nonstressed versus acutely or repeatedly stressed animals. B, quan-
tification showing the percentage change of p-CaMKII by PD168077 in PFC
slices from nonstressed versus stressed animals. *, p � 0.001, ANOVA. Error
bars indicate mean � S.E.

FIGURE 5. Bi-directional regulation of CaMKII activity underlies the
homeostatic regulation of AMPAR-EPSC by D4 in stressed animals. A and
B, plot of normalized AMPAR-EPSC showing the effect of PD168077 (40 �M) in
PFC neurons infused with active versus inactive CaMKII from acutely stressed
animals (A) or KN-92 versus KN-93 from repeatedly stressed animals (B). Insets,
representative EPSC traces taken from the time course denoted by #. Scale
bar, 50 pA, 20 ms. C, bar graphs (mean � S.E. (error bars)) showing the per-
centage modulation of AMPAR-EPSC by PD168077 in PFC neurons from
stressed (acute or chronic) animals in the presence of various reagents affect-
ing CaMKII activity. *, p � 0.001, t test.
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synaptically recruited under certain conditions, such as neuro-
nal activity blockade (49), sensory deprivation (50), or ischemia
(51). GluA2-lacking AMPARs have prominent inward rectify-
ing property (34), Ca2� permeability (52) and larger single
channel conductance (53), compared with GluA2-containing
AMPARs. The unique Ca2� permeability of GluA2-lacking
AMPARs plays an important role in homeostatic plasticity (49)
and LTP induction in hippocampus (35). Here, we show that
GluA2-lacking (GluA1 homomeric) AMPARs is the major tar-
get of D4. D4 reduces the GluA2-lacking AMPARs that are
delivered by acute stress, and D4 delivers more GluA2-lacking
AMPARs to the synapse in repeatedly stressed animals. Thus,
by redistributing GluA2-lacking AMPARs, D4 restores gluta-
matergic transmission in stress conditions. It is expected that
GluA2 knock-out animals will show differential effects of D4R
activation when acutely stressed and repeatedly stressed ani-
mals are compared.
One of the most important regulators of AMPARs and syn-

aptic plasticity is CaMKII (54). CaMKII activation has been
found to increase channel conductance (55) and promote syn-
aptic insertion of AMPARs (56). In this study, we demonstrate
that D4 markedly decreases CaMKII activity in acutely stressed
animals, which is important for the D4 reduction of AMPAR
responses. On the other hand, D4 potently increases CaMKII
activity in repeatedly stressed animals, which is important for
the D4 enhancement of AMPAR responses. It further confirms
that the D4-induced homeostatic regulation of AMPARs
depends on the activity-dependent bi-directional regulation of
CaMKII (23, 24, 38).
Our previous study has shown that at the high activity state,

D4 suppresses AMPAR responses by disrupting the kinesin
motor-based transport of GluA2 along microtubules via a
mechanism dependent on CaMKII inhibition. On the other
hand, at the low activity state, D4 potentiates AMPAR

responses by facilitating synaptic targeting of GluA1 through
the scaffold protein SAP97 via a mechanism dependent on
CaMKII stimulation (24). Thus, the major mechanism under-
lying the actions of D4 in stress conditions is likely to be
CaMKII-mediated regulation of AMPAR trafficking, not phos-
phorylation-dependent changes on channel conductance.
In summary, we conclude that D4 is a synaptic gatekeeper

that stabilizes glutamatergic transmission in prefrontal cortex.
When neuronal activity changes in situations such as acute or
repeated stress, D4 redistributes GluA2-lacking AMPARs at
synapses through the bi-directional control of CaMKII. This
homeostatic action of D4 provides a potential mechanism for
the unique role of D4 in many stress-related neuropsychiatric
disorders.
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