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A combination of genetic and environmental risk factors 
has been considered as the pathogenic cause for mental dis-
orders including schizophrenia. Here, we sought to find out 
whether the abnormality of the dopamine system, coupled 
with the exposure to modest stress, is sufficient to trigger the 
manifestation of schizophrenia-like behaviors. We found 
that exposing dopamine D4 receptor knockout (D4KO) 
mice with 1-week restraint stress (2  h/d) induced signifi-
cant deficits in sensorimotor gating, cognitive processes, 
social engagement, as well as the elevated exploratory 
behaviors, which are reminiscent to schizophrenia pheno-
types. Electrophysiological studies found that GABAergic 
transmission was significantly reduced in prefrontal cor-
tical neurons from stressed D4KO mice. Additionally, 
administration of diazepam, a GABA enhancer, restored 
GABAergic synaptic responses and ameliorated some 
behavioral abnormalities in stressed D4KO mice. These 
results have revealed that the combination of 2 key genetic 
and environmental susceptibility factors, dopamine dys-
function and stress, is a crucial trigger for schizophrenia-
like phenotypes, and GABA system in the prefrontal cortex 
is a downstream convergent target that mediates some 
behavioral outcomes.
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Introduction

Schizophrenia, a devastating neuropsychiatric disor-
der that affects nearly 1% of the general population, 
is characterized by 3 core symptoms: positive symp-
toms (psychosis), negative symptoms (social deficits) 
and cognitive symptoms (working memory and atten-
tion impairment).1 Researchers have been searching for 
the biological basis that underlies the manifestation of 
schizophrenia symptoms for decades. One hundred eight 

schizophrenia-associated genetic loci have been identi-
fied in genome-wide studies, and these common alleles of 
small effect confer genetic risk for this polygenic disease.2 
A recent twin study of schizophrenia reinforces the role 
of genetics in determining risk, suggesting that almost 
80% of the likelihood of having schizophrenia may be 
genetic.3

Several genes involved in dopamine signaling, includ-
ing those encoding dopamine receptors (DRD2, DRD3, 
and DRD4) and catecholamines-degrading enzyme cat-
echol-O-methyltransferase (COMT), have been impli-
cated in the etiology of schizophrenia.4 DRD4 is highly 
enriched in the prefrontal cortex (PFC),5–7 a key brain 
region significantly affected by schizophrenia.8,9 DRD4 
is upregulated in postmortem schizophrenic brain,10 
and the uniquely effective antipsychotic drug clozapine 
has a high affinity to D4 receptors.11,12 Genetic studies 
have confirmed that D4 gene polymorphisms are highly 
associated with risk-taking behaviors and attention def-
icit-hyperactivity disorder.13–16 Genetic ablation of D4 
receptors in mice results in supersensitivity to psychomo-
tor stimulants.17 These lines of evidence have implicated 
DRD4 in schizophrenia and related psychiatric disorders.

Other than genetic factors, environmental factors, 
such as stress, are also thought to contribute to the risk 
of developing schizophrenia.18,19 Stressors, such as life 
adversity, can disrupt PFC function, triggering the devel-
opment of cognitive deficits observed in schizophrenia.20 
Since schizophrenia has the late adolescent/early adult-
hood onset, a “two-hits” hypothesis of the disease has 
been proposed.21–24 In this model, genetic factors disrupt 
central nervous system development at the early stage, 
and these early disruptions produce long-term vulnera-
bility to a “second hit” that occurs later in life, leading to 
the onset of schizophrenia symptoms. Consistently, it has 
been shown that combining a prenatal immune disruptor 
with unpredictable stress to offspring in their adolescence 
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can trigger behavioral abnormalities reminiscent to some 
neuropsychiatric disorders.25 Repeated prenatal stress or 
postnatal social isolation stress also markedly exacerbates 
schizophrenic endophenotypes in Snap-25 mutant mice26 
and an NMDAR hypofunction mouse model,27 as well as 
induces aggression and hyperactivity in PACAP-deficient 
mice.28 Development of PFC during the earliest embry-
onic stage and during the late adolescent stage is thought 
to represent 2 critical periods of vulnerability for schizo-
phrenia, because cell proliferation and synaptic pruning 
in these stages may be influenced by environmental fac-
tors.29 Moreover, prefrontocortical dopamine response to 
stress is found to be disrupted in schizophrenia patients.30 
In this study, we modeled the “two-hits” scenario by 
exposing dopamine D4 receptor knockout (D4KO) mice 
to subchronic restraint stress, and examined the occur-
rence of schizophrenia-like phenotypes and the underly-
ing mechanisms.

Methods

Animals

Male and female C57BL/6J and D4KO mice17 at the late 
adolescent (6–7  wk old) stage were used in this study. 
Animals were maintained in the animal facility under 
controlled environmental conditions (22°C, 12  h light/
dark cycle) with free access to food. All experiments were 
performed with the approval of the Institutional Animal 
Care and Use Committee of the State University of New 
York at Buffalo.

Stress and Drug Treatment

For restraint stress, animals were gently placed in a plas-
tic cylinder and restrained for 2 hours between 9:00 AM 
and 11:00 AM daily for 7 consecutive days. Diazepam 
(Sigma-Aldrich) stock solution (10  mg/ml, dissolved in 
DMSO) was diluted in saline (0.5  mg/ml) before use. 
Diazepam (5  mg/kg) was injected (i.p.) in a subset of 
stressed D4KO mice during the 1-week restraint stress 
procedure (on the 5th, 6th and 7th d, injected after stress 
exposure each time).

Behavioral Tests

All behavior tests were carried out within 2  days after 
termination of the restraint stress protocol during the 
light cycle. The light was adjusted to dim light during 
all the behavioral experiments. ANY-maze 5.1 software 
(Stoelting Co.) was used for recording and data analy-
sis. To minimize the interference of previous behavior 
tests on the upcoming test, at least 2-hour intervals were 
applied between 2 behavioral assays, and usually, only 2 
tests were carried out on the same day. Each animal was 
subject to 4 behavioral assays within 2 days after stress. 
One set of mice was tested with locomotion, elevated 

plus maze (EPM), social approach, and acoustic startle 
response. Another set of mice was tested with rotarod, 
temporal order recognition  (TOR), forced swimming, 
and sucrose preference. Details on these behavioral tests 
are included in supplementary methods.

Electrophysiology

PFC slices from mice (7-wk-old) were prepared as pre-
viously described.31 Details on whole-cell voltage-clamp 
recordings of synaptic currents are included in supple-
mentary methods.

Immunohistochemistry

Details on parvalbumin staining are included in supple-
mentary methods.

Statistics

Clampfit 10.0.7 software (Molecular Devices), Mini 
Analysis Program 6.0.3 (Synaptosoft) and GraphPad 
Prism 6.02 (GraphPad Software Inc.) were used for ana-
lyzing the results. All data were presented as means ± 
standard error of the mean (SEM). For statistical signif-
icance, experiments with 2 groups were analyzed using 
2-tailed Student’s t tests. Experiments with more than 2 
groups were subjected to 1-way ANOVA, 2-way ANOVA 
or 2-way repeated measure ANOVA (rmANOVA), 
followed by post hoc Bonferroni tests for multiple 
comparisons.

Results

Stressed D4KO Mice Exhibit Deficits in Sensorimotor 
Gating, Cognition and Sociability, as well as Elevated 
Exploratory Behaviors

To test the behavioral abnormalities induced by modest 
stress (2 h restraint/d, 7 d) in wild-type (WT) and D4KO 
mice, a variety of behavioral tests that evaluate positive, 
negative, and cognitive symptoms of schizophrenia were 
carried out.

We first tested pre-pulse inhibition (PPI), a measure-
ment of sensorimotor gating, in which a weaker acoustic 
pre-stimulus inhibits the reaction to a subsequent strong 
startling stimulus. Deficits of PPI reflect the inability to 
filter out the unnecessary information, which is often 
present in schizophrenia patients.32

The basal startle responses to white noise background 
(66 dB) and different acoustic stimulus intensities (90, 
100, 110, and 120 dB) were similar in unstressed or 
stressed WT and D4KO mice (figure 1A, F3,30(group) = 1.55, 
P = .22; 2-way ANOVA). However, significant PPI deficits 
were found selectively in the stressed D4KO group at var-
ious pre-pulse intensities, compared to the other 3 groups 
(figure 1B, 70 dB: F1,33(interaction) = 21.73, P < .001; 76 dB: 
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F1, 31(interaction) = 30.95, P < .001; 85 dB: F1,33(interaction) = 8.48, 
P = .006, 2-way ANOVA). It suggests that D4KO mice are 
more susceptible to stress in their sensorimotor gating.

Next, we tested the impact of modest stress on cog-
nitive processes in D4KO mice. The TOR memory, a 

PFC-mediated explicit memory process requiring judg-
ments of the prior occurrence of stimuli based on the rel-
ative familiarity information,33 was performed. WT mice 
without or with stress, as well as non-stressed D4KO 
mice, all exhibited the preference for the novel (less 
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Fig. 1. Stressed D4KO mice exhibit deficits in sensorimotor gating, cognition, and sociability. (A) Plot of the startle response to white 
noise background (66 dB), and different acoustic stimulus intensities (90, 100, 110, and 120 dB) in non-stressed wild-type (WT) mice 
(WT, n = 6), WT mice with 7-d restraint stress (Stress, n= 9), non-stressed D4KO mice (D4KO, n = 7), and D4KO mice with 7-d restraint 
stress (D4KO+Stress, n = 12). (B) Plot of PPI with the pre-pulse intensity of 70, 76 and 85 dB in the 4 mouse groups. (C) Plot of 
discrimination ratio in TOR tests of WT (n = 11), Stress (n = 6), D4KO (n = 10), and D4KO+Stress (n = 9) mice. (D) Plot of interaction 
time with novel and old objects in TOR tests of the 4 mouse groups. (E, F) Representative heat maps (E) and plot of social contact time 
and social approach numbers (F) in the social engagement test of the 4 mouse groups (n = 6 per group). *P < .05, **P < .01, 2-way 
ANOVA.
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recent) object, while stressed D4KO mice lost the pref-
erence (figure  1C, discrimination ratio, WT: 38.94% ± 
6.47%, Stress: 29.13% ± 5.03%, D4KO: 18.99% ± 8.78%, 
D4KO+Stress: −31.37% ± 5.13%, F1, 32(interaction)  =  7.92, 
P = .008, 2-way ANOVA). Instead of spending more time 
on the novel object, stressed D4KO mice spent signifi-
cantly more time on the old familiar (more recent) object 
(figure  1D, WT: 10.30  ±  1.63  s, Stress: 14.69  ±  1.79  s, 
D4KO: 11.35  ±  2.36  s, D4KO+Stress: 31.49  ±  3.13  s; 
F1,32(interaction)  =  10.64, P  =  .003; 2-way ANOVA). It sug-
gests that D4KO mice are more vulnerable to stress in 
their cognitive function.

Moreover, we performed social engagement tests to 
evaluate the sociability. Stress exposure significantly 
reduced the time of social interaction in both WT and 
D4KO mice (figures 1E and 1F, F1,20(stress) = 32.42, P < .001; 
2-way ANOVA), while the significantly decreased number 

of social approach was only observed in stressed D4KO 
mice (figure  1F, P < .05, post hoc of 2-way ANOVA). 
It suggests that D4KO mice exposed to stress are more 
likely to have social withdrawal.

Given the schizophrenia-like behavioral manifesta-
tion of  stressed D4KO mice, we performed additional 
tests for anxiety and depression-like behaviors. In the 
EPM test (figures  2A and 2B), WT mice without or 
with stress, as well as non-stressed D4KO mice spent 
relatively less time in the open arm, suggesting the pres-
ence of  elevation-induced anxiety. However, stressed 
D4KO mice spent dramatically more time in the 
open arm (WT: 25.63 ± 4.53  s, Stress: 29.72 ± 4.48  s, 
D4KO 16.46  ±  4.22  s, D4KO+Stress: 58.36  ±  4.63  s, 
F1,32(interaction)  =  13.00, P  =  .001, 2-way ANOVA), sug-
gesting that they are less anxious and their exploratory 
behavior is strongly elevated.
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Fig. 2. Stressed D4KO mice display elevated exploratory behaviors, but no anxiety or depression-like behaviors. (A, B) Representative 
heat maps (A) and plot of time in the open arm (B) of the elevated plus maze test of wild-type (WT; n = 6), Stress (n = 11), D4KO 
(n = 8), and D4KO+Stress (n = 11) mice. (C) Plot of the percentage of sucrose preference on day 4 of sucrose preference test of WT 
(n = 7), Stress (n = 9), D4KO (n = 7), and D4KO+Stress (n = 12) mice. (D) Plot of total moving distance in the locomotion test of WT 
(n = 11), Stress (n = 10), D4KO (n = 12), and D4KO+Stress (n = 11) mice. (E) Plot of total immobility time in the forced-swimming test 
of WT (n = 7), Stress (n = 5), D4KO (n = 10), and D4KO+Stress (n = 10) mice. *P < .05, **P < .01, 2-way ANOVA.
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In the sucrose preference test of anhedonia, we found 
that stressed D4KO mice had a significantly higher level 
of sucrose preference, compared to WT mice (figure 2C, 
Con: 59.84% ± 4.99%; Stress: 60.04% ± 5.46%; D4KO: 
70.03% ± 5.72%, D4KO+Stress: 84.81% ± 2.65%; P < 
.01, post hoc of 2-way ANOVA), suggesting that stressed 
D4KO mice display heightened sensitivity to sucrose 
water cues, which might reflect changes in motivational 
states.

For the locomotor activity, D4KO mice exhibited 
hypo-locomotion, compared to WT mice, and stress 
significantly increased the locomotor activity in D4KO 
mice, bringing it to the level of WT mice (figure  2D, 
F1,40(interaction) = 13.51; P < .001, 2-way ANOVA). No sig-
nificant differences were found on the total immobil-
ity in forced-swim tests among the 4 groups (figure 2E, 
F1,28(interaction) = 0.01; P = .91, 2-way ANOVA), suggesting 
the lack of depressive behaviors.

Stressed D4KO Mice Show Little Changes in 
Excitatory Synaptic Signaling, but Significantly 
Diminished GABAergic Synaptic Inhibition in the PFC

To explore the potential mechanisms that underlie the 
behavioral changes in stressed D4KO mice, electro-
physiological experiments were carried out. We first 
examined the excitatory synaptic responses mediated by 
AMPA and NMDA receptors in PFC pyramidal neu-
rons, which are important for PFC-mediated cognitive 
and emotional processes.34 For AMPAR-EPSC, which 
evoked by a series of stimulation intensities, the mod-
est restraint stress showed little effect in both WT and 
D4KO mice (figures 3A and 3B, F3,60(group) = 2.09, P = .11, 
2-way ANOVA). The ratio of paired-pulse facilitation 
of AMPAR-EPSC was similar among the 4 groups 
(figure  3C, F3,56(group)  =  2.18, P  =  .10, 2-way ANOVA). 
Miniature EPSC, a synaptic response resulting from the 
quantal release of single glutamate vesicles, also had little 
changes in stressed WT or D4KO mice (figures 3D–3F, 
WT: 9.77 ± 0.22 pA, 2.57 ± 0.15 Hz; Stress: 8.77 ± 0.30 
pA, 2.31 ± 0.18 Hz; D4KO: 10.33 ± 0.33 pA, 2.43 ± 0.16 
Hz; D4KO+Stress: 8.69 ± 0.33 pA, 2.26 ± 0.11 Hz, Amp: 
F1,73(interaction)  =  1.22, P  =  .27, Freq: F1,73(interaction)  =  0.08, 
P  =  .78, 2-way ANOVA). For input-output curves of 
NMDAR-EPSC, no significant changes were found in 
WT or D4KO mice without or with stress (figures 3G and 
3H, F3,43(group) = 0.11, P = .96, 2-way ANOVA).

Given the mild effects of stress on glutamater-
gic responses in D4KO mice, we further examined 
GABAergic inhibitory transmission in PFC pyrami-
dal neurons. As shown in figures  4A and 4B, stressed 
D4KO mice had significantly decreased amplitudes of 
GABAAR-IPSC (~30% reduction) evoked by a series of 
stimulation intensities, compared to WT or non-stressed 
D4KO mice (F3,62(group) = 5.13, P = .003, 2-way ANOVA). 
The ratio of paired-pulse facilitation of GABA-IPSC 

was not significantly changed among the 4 groups (fig-
ure 4C, F3,67(group) = 1.85, P =  .15, 2-way ANOVA). The 
amplitude of miniature IPSC was significantly decreased 
(~22%) only in stressed D4KO mice (figure 4D and 4F, 
WT: 23.53 ± 0.90 pA, Stress: 21.83 ± 0.73 pA, D4KO: 
21.76  ±  0.74 pA, D4KO+Stress: 18.28  ±  0.79 pA, 
D4KO+Stress vs WT, P < .01, post hoc of 2-way ANOVA). 
The mIPSC frequency was not significantly altered by D4 
knockout or stress (figure 4E, F1,75(interaction) = 0.75, P = .39, 
2-way ANOVA). These results suggest that GABAergic 
synaptic inhibition is impaired in PFC pyramidal neu-
rons from stressed D4KO mice.

A large amount of literature has shown that parvalbu-
min (PV)-positive interneurons, which control prefrontal 
cortical gamma oscillations, a key neural substrate for 
cognition, are affected in schizophrenia.35–37 The impaired 
GABA function in stressed D4KO mice prompted us to 
test whether these mice exhibit the loss of PV staining in 
PFC. As shown in figures 5A and 5B, compared to non-
stressed WT mice, the 7-day restraint stress (2  h daily) 
induced a modest reduction of the number of PV+ neu-
rons in PFC of WT mice, while a more significant loss of 
PV+ neurons was observed in stressed D4KO mice (WT: 
54.7 ± 2.53, WT+Stress: 42.1 ± 4.06, D4KO: 56.0 ± 2.23, 
D4KO+Stress: 40.1 ± 2.21, F1,118(stress) = 26.0, P < .0001, 
2-way ANOVA). These data provide 1 potential mech-
anism for the diminished GABAergic inhibition and 
the schizophrenia-like behavioral phenotypes in stressed 
D4KO mice.

The GABA Enhancer Diazepam Restores Synaptic 
Inhibition and Reverses Some Behavioral Abnormalities 
in Stressed D4KO Mice

To find out whether the decreased GABAergic transmis-
sion may underlie the abnormal behaviors of stressed 
D4KO mice, we injected diazepam (DZ, 5  mg/kg, i.p., 
3×), a positive allosteric modulator of GABAA receptors, 
to elevate GABA signaling, followed by electrophysiolog-
ical experiments and behavioral tests.

We first examined the effects of diazepam treatment on 
inhibitory synaptic transmission. As shown in figure 6A, 
diazepam injections to stressed D4KO mice induced 
the significant increase (46%–50%) of GABAAR-IPSC 
evoked by strong stimuli (F2,46(group) = 8.32, P < .001, 2-way 
ANOVA). Consistently, the spontaneous IPSC amplitude 
and frequency in PFC neurons from stressed D4KO mice 
were also significantly increased by diazepam treatment 
(figure 6B, saline: 19.22 ± 1.34 pA, 4.15 ± 0.24 Hz; DZ: 
27.61 ± 1.32 pA, 6.37 ± 0.35 Hz; P < .001, t test).

Next, we examined the impact of diazepam treatment on 
behaviors in stressed D4KO mice. WT mice were injected 
with saline as controls. In the test of sensorimotor gating, 
the basal startle response to different acoustic stimulus inten-
sities was not affected by diazepam treatment (figure  6C, 
F3,25(group)  =  1.78, P  =  .18, 2-way ANOVA). Diazepam 
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treatment significantly ameliorated the PPI deficits in stressed 
D4KO mice (figure 6D, 70 dB: P < .05; 76 dB: P < .01; 85 dB: 
P < .01; D4KO+Stress+saline vs D4KO+Stress+DZ, post 
hoc of 2-way ANOVA), without affecting PPI in WT mice.

In the test of cognition, diazepam treatment signifi-
cantly elevated the discrimination ratio of TOR memory 
in stressed D4KO mice (figure 6E, D4KO+Stress+saline: 
−14.68% ± 9.86%, D4KO+Stress+DZ: 22.39% ± 7.82%, 
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neurons from wild-type (WT; n = 20 cells), Stress (n = 15 cells), D4KO (n = 21 cells), and D4KO+Stress (n = 12 cells) mice. (D, E, F) 
Miniature EPSC amplitude (D), frequency (E) and representative traces (F) in PFC pyramidal neurons from WT (n = 30 cells), Stress 
(n = 11 cells), D4KO (n = 20 cells), and D4KO+Stress (n = 18 cells) mice. (G, H) Input-output curves (G) and representative traces (H) of 
evoked NMDAR-EPSC in PFC pyramidal neurons from WT (n = 9 cells), Stress (n = 15 cells), D4KO (n = 14 cells), and D4KO+Stress 
(n = 8 cells) mice.
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P < .05, post hoc of 1-way ANOVA). In the elevated plus 
maze test, stressed D4KO mice with diazepam treatment 
showed less time in the open arm, but without statisti-
cal significance, compared to saline treatment (figure 6F, 
D4KO+Stress+saline: 50.24 ± 4.12 s, D4KO+Stress+DZ: 
36.97 ± 4.78 s, P > .05; post hoc of 1-way ANOVA).

In the social engagement test, diazepam treatment 
of stressed D4KO mice failed to significantly increase 

social interaction time (figure 6G, D4KO+Stress+saline: 
88.8  ±  17.7  s, D4KO+Stress+DZ: 87.4  ±  18.3  s, P > 
.05, post hoc of 1-way ANOVA) or social approach 
numbers (figure  6G, D4KO+Stress+saline: 31.7  ±  3.1, 
D4KO+Stress+DZ: 32.0  ±  5.1, P > .05, post hoc of 
1-way ANOVA).

Diazepam treatment of stressed D4KO mice did not 
affect movement coordination, as measured by rotarod 
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Fig. 6. The GABA enhancer diazepam elevates GABAergic responses and reverses some behavioral abnormalities in stressed D4KO 
mice. (A) Input-output curves of GABAAR-IPSC in prefrontal cortex (PFC) pyramidal neurons from wild-type (WT) or stressed D4KO 
mice injected with saline (KO+S+sal, n = 15 cells) or diazepam (KO+S+DZ, n = 11 cells). Inset: representative GABAAR-IPSC traces. 
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D
ow

nloaded from
 https://academ

ic.oup.com
/schizophreniabulletin/advance-article-abstract/doi/10.1093/schbul/sby163/5198601 by U

niversity at Buffalo,  zhenyan@
buffalo.edu on 26 N

ovem
ber 2018



Page 9 of 12

Stress Exposure in DRD4 Knockout Mice Induces Schizophrenia-Like Behaviors

tests (figure  6H, F2,23  =  0.51, P  =  .61, 1-way ANOVA). 
Locomotor activity was also not changed by diazepam 
(figure 6I, 10 min: F2,22 = 2.47, P = .11; 30 min: F2,22 = 1.92, 
P = .17, 1-way ANOVA).

Taken together, these results indicate that diazepam 
treatment of stressed D4KO mice is capable of elevat-
ing inhibitory transmission in PFC pyramidal neurons 
and restoring some behavioral abnormalities, including 
deficits in sensorimotor gating and cognition, but fails to 
have a significant impact on other behaviors, such as the 
reduced sociability and elevated exploratory behaviors.

Discussion

Heredity is the most well-established schizophrenia risk 
factor.2,3 However, since most people carrying genetic 
risk factors do not develop the disease, other environ-
mental risk factors during sensitive periods are thought 
to be involved.21–28,38,39 It is perceived that genetic muta-
tions and environmental insults cause unbalanced excit-
atory/inhibitory activity, aberrant dopamine system, and 
reduced signal-to-noise ratio in vulnerable circuitry, lead-
ing to network disturbances and system failure, which 
induces the onset of schizophrenia.8 Here we have found 
that stress exposure to animals with dopamine dysfunc-
tion triggers a variety of schizophrenia-like phenotypes, 
including deficits in sensorimotor gating, cognition, and 
sociability, supporting the “two-hits” hypothesis of schiz-
ophrenia.21 Concomitant to the behavioral abnormality, 
diminished GABAergic transmission in PFC is exhibited 
in these animals with double hits. Elevating GABA sig-
naling ameliorates some aspects of behavioral deficits, 
highlighting the causal role of the GABA system in cer-
tain domains of schizophrenia.

In this study, we have used D4KO mice to model a 
dysfunctional DA system. These animals exhibit mild 
phenotypes in basal conditions, but show supersensitiv-
ity to psychomotor stimulants,17 reduced exploration of 
novel stimuli,40 and enhanced reactivity to unconditioned 
fear.41 We have found very few behavioral changes in 
D4KO mice. However, exposing these mice to mild stress 
(7-d restraint, 2 h/d), schizophrenia-like phenotypes are 
induced. The same stress paradigm exerts a little effect in 
WT mice, suggesting that abnormal dopamine signaling 
renders animals more vulnerable to stress. Consistently, a 
previous study has found that exposing transgenic mice 
with a putative dominant-negative DISC1 (disrupted in 
schizophrenia 1) to 3-week isolation stress during adoles-
cence induces long-lasting behavioral changes resembling 
those of psychotic depression.18

D4 receptor has been suggested to play an impor-
tant role in PFC-mediated cognitive functions and the 
pathophysiology of neuropsychiatric disorders.42,43 Our 
previous studies have found that D4 receptor activa-
tion regulates the trafficking and function of AMPA 
and GABAA receptors in PFC pyramidal neurons and 

GABAergic interneurons via distinct mechanisms.44–48 
The ADHD-linked human dopamine D4 receptor vari-
ant induces over-suppression of NMDAR function and 
aberrant regulation of synchronous network activity in 
PFC.49,50 Consistent with the general finding of our cur-
rent study, it has been found that overstimulation of D4 
receptors in the PFC induces dysregulation of emotions 
reminiscent to the effects observed in schizophrenia.51–53 
Moreover, disruption of D4 signaling in the PFC ren-
ders animals more sensitive to stress-related conditioning 
memories.54

Compensatory changes have been reported in animals 
with the ablation of D4 receptors. Dopamine supersensi-
tivity, which correlates with the increased levels of high-
affinity D2 receptors, is found in D4 KO mice.55 Increased 
expression of D1 receptors and NMDA receptors is also 
found in the striatum of D4R KO mice.56 We did not 
observe significant changes in the baseline synaptic cur-
rents mediated by AMPARs, NMDARs or GABAARs 
in PFC pyramidal neurons of D4KO mice. However, we 
have found the selective loss of GABAergic transmission 
in the PFC of stressed D4KO mice, supporting the con-
cept that dysfunctional GABA system may be a major 
convergence point for genetic and environmental suscep-
tibility factors for schizophrenia.57 Among the abnormal 
neurochemical markers for schizophrenia in postmortem 
brains, the largest portion is associated with developmen-
tal/synaptic and GABA systems.58 The reduced expression 
of glutamic acid decarboxylase (GAD), the key enzyme 
in GABA synthesis, has been observed in the PFC and 
hippocampus of schizophrenics.58–60 GABAA receptor 
dysfunction has also been implicated in cortical excita-
tion/inhibition imbalance in schizophrenia.61,62 In sub-
jects with schizophrenia, GABAAR α1 subunit mRNA 
expression is significantly (40%) lower in PFC pyram-
idal cells, but not in GABAergic interneurons, suggest-
ing that pyramidal cell inhibition is specifically reduced 
in schizophrenia.63 The mRNA expression of GABAAR 
β2, which preferentially assembles with α1 subunits, is 
also lower (20%) in dorsolateral PFC of schizophrenia 
patients.64 The diminished GABAergic inhibition in PFC 
pyramidal neurons from stressed D4KO mice is likely due 
to the loss of synaptic GABAA receptors or GABAergic 
interneurons. In agreement with this, we have found the 
significantly reduced parvalbumin-positive interneu-
rons in PFC of stressed D4KO mice, consistent with the 
lower level of parvalbumin mRNA in schizophrenia,35 
and the disrupted function of PV+ PFC interneurons in 
schizophrenia.36

Interestingly, we have found that elevating GABA sig-
naling in stressed D4KO mice with diazepam treatment 
alleviates the PPI deficits and improves PFC-mediated 
cognition, pointing to the therapeutic potential of phar-
macological compounds that act on GABA function for 
schizophrenia. Consistently, it has been found that admin-
istration of benzodiazepines or diazepam can prevent the 
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development of neuroanatomical and neurophysiological 
abnormalities associated with schizophrenia.65–67

Overall, our results show that the combination of 
genetic and environmental risk factors is capable of trig-
gering the manifestation of schizophrenia-like behaviors, 
which is contributed by the disrupted GABA system. 
Normalizing GABAergic transmission in PFC provides a 
promising avenue to treat some schizophrenia-associated 
symptoms.

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin online.
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