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1. Overview of Statistical Methods Used in GeoSurveillance
The development and use of statistical methods designed for testing the null hypothesis of spatial randomness (e.g., nearest neighbor statistic, quadrat methods, K-functions, etc.) has a long history.  Many of these methods have been resurrected and improved upon as the field of spatial analysis has grown along with GIS during the last few decades. 

Spatial cluster detection may be (a) local (focused), or (b) global (general), or (c) may involve a search for the maximum of local statistics.  In the first case, a test for increased risk around a prespecified focus is carried out.  In the second, a single statistic is used to summarize any deviations from expectations; a rejection of the null hypothesis of spatial randomness gives limited results, since the size and location of clusters is not revealed. The final class of tests can be used to find both cluster size and location when these are unknown a priori (Besag and Newell 1991).

Most of these tests have been carried out for a single dataset at one point in time.  Only recently has much interest focused upon monitoring changes in spatial patterns over time.
2. Primary Objectives of GeoSurveillance
1. Provide an integrated set of statistical tests, with respect to the three-way classification of tests for clustering.  These are retrospective tests; they are typically carried out once, on data previously collected.
2. Provide an approach to monitoring a set of regions (based in part on the types of tests used in (1), with the objective of quick detection of emergent spatial clusters.   These are prospective methods, based on repeated assessment of new data as it becomes available.
3. Classification of Statistical Tests for Cluster Detection

The classification outline below is not meant to be exhaustive; its purpose is to provide a typology within which existing methods fit.  The resulting organization structure is useful in understanding the structure of GeoSurveillance.


          1. Aspatial Methods     2. Spatial Methods

                         __________________________________

I. Static (retrospective) tests
Global/

∙ Chi-square
     
 ∙Tango’s test (1995)

General
goodness-of-fit
∙Moran’s I 





      
∙Spatial chi-square statistic




      
∙Global score statistic
Local/

∙Poisson test
      
∙Score tests
Focused
∙Binomial test
      
∙Local Moran

Detection 
∙M test

     
∙Spatial M test

of clustering
  Fuchs & Kennett        Rogerson (2001)

(max. of local
 (1980)

     
∙Spatial scan statistic

tests)



                Kulldorff 

II. Retrospective change tests



∙Change detection     ∙Change detection for




for exponential, 
       multinomial sequences



normal, etc. 
         Srivastava and Worsley 



sequences 
         (1986)

III. Prospective tests for monitoring
and quick detection of new clusters
∙Shewhart charts
∙Aspatial methods on each 



                 region, with adjustment for 



∙Univariate cusum 
   multiple testing (to avoid a



  charts

                 high rate of alarms





∙Multivariate cusum methods






∙Monitor global spatial statistics






∙Monitor spatial maxima


4. Retrospective statistical tests of the null hypothesis of spatial randomness
An integrated set of statistical tests (Rogerson 2005a)

Introduction and Concepts


∙ Although there are many approaches used for each of the three types of clustering tests as described by Besag and Newell (1991), they have generally been developed independent of one another, and are not conceptually integrated.

∙Many local and global statistical measures have been integrated (such as local and global  Moran statistics); in fact a desirable requirement of local statistics is that they add to the global statistic (Anselin 1995).

In an aspatial setting, the normal approximation to the Poisson distribution can be used to a local test:
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                                                       (1) 
where O and E refer to the observed and expected values for region i.  (Here we assume that the expected values refer to an expectation under the null hypothesis of no raised incidence in region i.  In the simplest case, these expectations are found by multiplying the size of the at-risk population in region i by the common, overall disease rate.  In more complex examples, the expected number of cases in region I could be found as the output of a separate model that predicted the number of cases in region i as a function of not only population, but other relevant covariates, such as age, gender, income, education, etc.).  

This local statistic can be assessed by comparing the observed z value with tabled values of the normal distribution.  Alternatively, when the null hypothesis is true, the statistic zi2 has a chi-square distribution one degree of freedom, and its significance can be assessed by comparing it with tabled values.


The corresponding global statistic is the sum of these local statistics, and is the familiar chi-square goodness-of-fit statistic:
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With n regions, this global statistic has n-1 degrees of freedom.  Finally, it is of interest to ask how we can assess the entire set of local statistics simultaneously.  After all, it is more common that we will not know where to look for raised incidence; local statistics allow us to look at any one, prespecified region, but we must account for multiple testing if we examine all regional local statistics.  Fuchs and Kennett (1980) suggest that the maximum local statistic (i.e.,
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) be assessed by using the normal distribution with a critical value of 
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 instead of the usual value of 
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, where 
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 is the probability of the Type I error where a true null hypothesis is rejected.  This amounts to a Bonferroni adjustment for the number of tests (n) being carried out.  

The preceding example is aspatial since the local statistic for each region is based on data for that region only.  More generally, we would like to base local statistics on data not only the region of interest, but on data from surrounding regions as well.  The remainder of this section uses the structure for the aspatial tests outline above, extending it to the case where local statistics are based on data from a neighborhood surrounding the region of interest.


Here we will use the local score statistic (a common choice for focused tests of clustering; see, e.g., Lawson 2000; Waller and Gotway 2004).  After describing its well-known distribution, we will develop an associated global score statistic and describe its distribution; we will also describe how to assess the significance of the maximum local (spatial) score statistic.

Synopsis of methods

(i) Begin with the local score statistic for each region:
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where wij is the weight associated with the relationship between regions i and j.  Under the null hypothesis of no clustering around location i, this local statistic has a normal distribution with mean zero and variance
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                         (2)
In the special case where the weights are defined using a scaled Gaussian kernel, and are then divided by the square root of the expectations, V[U]=1 and the local statistics can be taken as coming from a standard normal distribution under the null hypothesis of no raised incidence in the vicinity of the location.
In particular, the Gaussian weights are defined as follows:
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where 
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 is the bandwidth defining the local neighborhood and 
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 is the distance from region i to region j (e.g., the distance between regional centroids) .  A is the area of the study region, and n is the number of subregions.  With this definition, 
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=1 implies that the standard deviation of the Gaussian kernel extends from the center of the region to a distance equal to the average distance between regional centroids.  As
[image: image13.wmf]s

increases, more smoothing occurs and weights given to distant subregions increase. 

These weights are also scaled that so, approximately, 
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.  This approximation breaks down somewhat for regions that are of heterogeneous size and shape, and also breaks down somewhat near the edges of the study region.  The property can be restored by adjusting the weights as follows:
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With these weights, the local statistic
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                                       (3)
is a weighted sum of regional z-scores (based on the Poisson distribution; see eq 1) that are in the neighborhood of region i.  Again, this local statistic has a standard normal distribution under the null hypothesis when the weights are defined as above.  (And Ui2 has a chi-square distribution with one degree of freedom). As the bandwidth approaches zero, the local statistics approach the aspatial local statistics defined in (1).
Of course an alternative local statistic, unadjusted for expectations, is simply
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which has a mean of zero and a variance given by Equation (2)

In general, one should choose the bandwidth to match the anticipated cluster size; this will maximize the statistical power of detecting an actual cluster of that size.
(ii) Define a global statistic, U2, as the sum of the squares of these local statistics.  These can be written as 
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                  (5)
(corresponding to the local statistics defined in equation 3), and 
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                    (6) 
(corresponding to the local statistics defined in equation 4).  

The global score statistic (5) approaches the chi-square goodness-of-fit statistic for small values of the bandwidth,
[image: image20.wmf]s

.

Equation (5) can be thought of as a spatial chi-square statistic; it is a combination of an aspatial goodness-of-fit measure, and a Moran-like expression for pairs of regions.
The results of Tango (1995) can be used to assess the statistical significance of U2.  In particular, to assess the significance  of (6), let 
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where O+ is the total number of cases, and 


[image: image23.wmf]'

();

p

V

=D-

ppp

                                                    (9)
p is a nx1 vector of the expected proportion of cases falling in each of the n regions, and 
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 is a nxn matrix with the elements of p along the diagonal, and zeros elsewhere.  Then 
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and the statistic 
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 has a chi-square distribution with 
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 degrees of freedom, where
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The significance of the global statistic as defined in (5) proceeds in the same manner, but where the weights are first divided by the expectation terms before proceeding with (7) – (11).
(iii)  Maximum local statistic

If the Gaussian weights defined previously are used as in (3) to define local statistics, then each local statistic has mean 0 and variance 1, and the maximum local statistic will exceed the following critical value with probability 
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, under the null hypothesis (Rogerson 2000):
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More discussion of this is given in the next subsection.
Assessing the significance of the maximum local statistic: a spatial version of the M test
A. Introduction and Concepts

∙Local statistics are correlated in space; this complicates the statistical assessment of the maximum local statistic.

∙ Most tests, such as Kulldorff’s spatial scan statistic, rely on Monte Carlo simulation to assess significance of many correlated local cluster tests.  

∙The probability that the maximum of a field of z-scores, when smoothed using a Gaussian kernel, is known (from random field theory); this has been applied, for example, in fMRI imaging of the brain to detect areas of brain activation.  

B. Synopsis of method
(i) Each region has a z-score, based only upon observations in that region.  For example,
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(ii) These regional z-scores are smoothed, using a Gaussian kernel.  The bandwidth of the kernel is chosen to match the hypothesized cluster size.  More generally, different bandwidths can be tried in a more exploratory mode.
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(iii) The maximum of the observed and smoothed regional values is compared with the critical value
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This is based on the finding that, when testing the significance of the maximum among n local statistics, the effective number of independent tests is approximately
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5. Prospective tests

Monitoring a set of regions for quick detection of change

A. Concepts and Introduction

Cumulative sum methods from statistical process control approaches to industrial quality control are employed (Hawkins and Olwell 1998).  These methods allow for the quick detection of increases in variable, from one mean to another.  They account for the multiple hypothesis testing that is associated with repeated assessment as new data become available.
In a spatial context, we wish to monitor many local statistics simultaneously, by adjusting for the non-independence of nearby local statistics.
B. Synopsis of Methods (Rogerson 2005b)
For each region, maintain the cumulative sum based on the z-scores
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where k is a parameter equal to one-half the size of the expected change (represented in std. deviations); this is usually set to 0.5. 

Choose a value, ARL0, equal to the average number of observations between false alarms (similar to a Type I error rate).  Then find a threshold
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A significant increase is signaled when the cusum, Sit, exceeds this threshold.

For n regions, where separate cusum charts are maintained for each region, the threshold could be based on n*ARL0 so that false alarms across the regional system occur at the desired frequency.  This is a Bonferroni adjustment, and assumes independent charts.

If n separate charts for local statistics are maintained, the Bonferroni adjustment is conservative (will have fewer false alarms, and hence also fewer ‘real’ detections than desired), since local statistics are correlated.

Instead, when Gaussian weights are used for the local statistics, we base the threshold on e*ARL0, where


[image: image37.wmf]2

10.81

n

e

s

=

+


References
Besag, J. and Newell, J. 1991. The detection of clusters in rare diseases.  Journal of the Royal Statistical Society Series A, 154: 143-55.
Fuchs, C. and Kenett. 1980. A test for detecting outlying cells in the multinomial distribution and two-way contingency tables.  Journal of the American Statistical Association 75: 395-98.

Hawkins, D.M. and Olwell, D.H. 1998. Cumulative sum charts and charting for quality improvement.  New York: Springer-Verlag.
Lawson , A. 2001. Statistical methods in spatial epidemiology.  New York: Wiley.

Rogerson, P. 2001. A statistical method for the detection of geographic clustering. Geographical Analysis, 33: 215-27.

Rogerson, P. 2005a. A set of associated statistical tests for the detection of spatial clustering.  Ecological and Environmental Statistics, 12, 3: 275-288.
Rogerson, P. 2005b. Spatial Surveillance and Cumulative Sum Methods. In Spatial and Syndromic Surveillance for Public Health.  Eds. K. Kleinman and A. Lawson.  95-114.

Waller, L. and Gotway, C. 2004.  Applied spatial statistics for public health data.  New York: Wiley.

� EMBED Equation.DSMT4  ���








[image: image38.wmf]1

()

)       ()

)     14()

32

)()

2

jj

j

j

jjjj

jjjj

j

j

OE

azPoisson

E

bzOOEFreemanTukey

OEOE

czRossi

E

-

=

=++-+-

-+

=

_1227631091.unknown

_1227634678.unknown

_1227677566.unknown

_1227677809.unknown

_1227678120.unknown

_1227683009.unknown

_1227683341.unknown

_1227677829.unknown

_1227677697.unknown

_1227677770.unknown

_1227677682.unknown

_1227635106.unknown

_1227677458.unknown

_1227634811.unknown

_1227633699.unknown

_1227634456.unknown

_1227634523.unknown

_1227633084.unknown

_1227438155.unknown

_1227630343.unknown

_1227631058.unknown

_1227631076.unknown

_1227630959.unknown

_1227438360.unknown

_1227438446.unknown

_1227629694.unknown

_1227438536.unknown

_1227438400.unknown

_1227438232.unknown

_1221739695.unknown

_1227437919.unknown

_1227438004.unknown

_1227438059.unknown

_1227181391.unknown

_1221157731.unknown

_1221229429.unknown

_1186474260.unknown

