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Abstract. Let H2(S) be the Hardy space on the unit sphere S in Cn. We show that a
set of inner functions Λ is sufficient for the purpose of determining which A ∈ B(H2(S)) is
a Toeplitz operator if and only if the multiplication operators {Mu : u ∈ Λ} on L2(S, dσ)
generate the von Neumann algebra {Mf : f ∈ L∞(S, dσ)}.

1. Introduction

Throughout the paper, we denote the unit sphere {z ∈ Cn : |z| = 1} in Cn by S.
Let σ be the positive, regular Borel measure on S which is invariant under the orthogonal
group O(2n), i.e., the group of isometries on Cn ∼= R2n which fix 0. Furthermore we
normalize σ such that σ(S) = 1. Recall that the Hardy space H2(S) is the closure in
L2(S, dσ) of polynomials in the coordinate variables z1, . . . , zn. Let

P : L2(S, dσ)→ H2(S)

be the orthogonal projection. For each f ∈ L∞(S, dσ), we have the Toeplitz operator Tf
on H2(S) defined by the formula

Tf = PMf |H2(S).

That is, Tf is the compression of the multiplication operator Mf to the subspace H2(S).

Toeplitz operators, on various reproducing-kernel Hilbert spaces, have been exten-
sively studied in the literature. This paper concerns one of the most elementary questions
in the theory, namely, how does one characterize a Toeplitz operator on H2(S)?

In the case where the complex dimension n equals 1, i.e., in the unit circle case, there
is a very simple answer due to Brown and Halmos. In [2], Brown and Halmos showed that
if A is a bounded operator on the Hardy space H2 of the unit circle T = {z ∈ C : |z| = 1},
then A is a Toeplitz operator if and only if it satisfies the equation

(1.1) Tz̄ATz = A.

This criterion for Toeplitz operator was later generalized to arbitrary complex dimension
n. In [3], Davie and Jewell showed that, for whatever n, a bounded operator A on H2(S)
is a Toeplitz operator if and only if it satisfies the equation

(1.2)
n∑
j=1

Tz̄jATzj = A.
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By any reasonable standard, (1.2) is a satisfactory generalization of (1.1) to the high-
dimensional case. But the fact that (1.2) is a satisfactory generalization of (1.1) also
causes one to neglect the other side of the story, namely, when n ≥ 2, (1.2) is really a
different kind of test for Toeplitz operators. The substantive difference between (1.1) and
(1.2) is the simple fact that when n = 1, z is an inner function on the unit disc; in contrast,
if n ≥ 2, then the functions z1, . . . , zn are far from being inner.

Let B denote the open unit ball {z ∈ Cn : |z| < 1} in Cn. Recall that an analytic
function u on B is said to be inner if

lim
r↑1
|u(rζ)| = 1 for σ-a.e. ζ ∈ S.

As usual, we identify the function u on B with its boundary value on S. In this paper,
we consider the problem of characterizing Toeplitz operators in terms of inner functions,
which is not addressed by (1.2) in the case n ≥ 2. When [3] was published in 1977, it
was not yet known that there are non-constant inner functions on B in the case n ≥ 2.
Therefore (1.2) was the best that could be managed in terms of characterizing Toeplitz
operators at the time. Later, Aleksandrov [1] and Løw [6] showed that there are non-
constant inner functions on B for every n ≥ 2. This makes it possible to consider the
problem of characterizing Toeplitz operators in terms of inner functions.

Note that if u is an inner function, then for every f ∈ L∞(S, dσ) we have

TūTfTu = Tūfu = Tf .

Thus, in order for an operator A on H2(S) to be a Toeplitz operator, it is necessary that

TūATu = A for every inner function u on B.

Our question is the following. Suppose that Λ is a non-empty set of inner functions on B.
If A is a bounded operator on H2(S) and if it satisfies the condition

TūATu = A for every u ∈ Λ,

can we conclude that A is a Toeplitz operator on H2(S)? Note that even in the case n = 1,
this question goes beyond the Brown-Halmos criterion for Toeplitz operators.

We will characterize those sets Λ which yield the answer “yes” to the above question.
Interestingly, this characterization involves von Neumann algebras and a rare use of the
double-commutant relation of Murray and von Neumann. We will then deal with specific
Λ’s which yield the answer “yes” and specific Λ’s which yield the answer “no” to the above
question.

To conclude the introduction, let us summarize these specific results.

(1) Let Aut(B) denote the group of biholomorphic bijections on the ball B. Let u be
any non-constant inner function on B. Then the set {u◦ψ : ψ ∈ Aut(B)} is an example of
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Λ that yields the answer “yes” to the above question. That is, if A is a bounded operator
on H2(S) such that Tu◦ψATu◦ψ = A for every ψ ∈ Aut(B), then A is a Toeplitz operator.

(2) Suppose that n ≥ 2. Then for each singleton set Λ = {u}, the answer to the
above question is always “no”. In other words, for every inner function u on B, there is a
bounded operator Y on H2(S) such that TūY Tu = Y and yet Y is not a Toeplitz operator.

(3) Suppose that n = 1. Let u be an inner function on the unit disc. If u does not
have the form

eiθ
a− z
1− āz

,

where θ ∈ R and |a| < 1, then there is a bounded operator Y on H2 such that TūY Tu = Y
and yet Y is not a Toeplitz operator. This puts the Brown-Halmos criterion in the proper
perspective.

2. Transformations on the Unit Ball

For each a ∈ B\{0}, we have the Möbius transform

ϕa(z) =
1

1− 〈z, a〉

{
a− 〈z, a〉

|a|2
a− (1− |a|2)1/2

(
z − 〈z, a〉

|a|2
a

)}
, z ∈ B.

Each ϕa is an involution, i.e., ϕa ◦ ϕa = id [7,Theorem 2.2.2]. We also define ϕ0(z) = −z
on B. By Theorems 3.3.8 and 2.2.2 in [7], the formula

(2.1) (Uaf)(z) =
(1− |a|2)n/2

(1− 〈z, a〉)n
f(ϕa(z)), f ∈ L2(S, dσ),

defines a unitary operator with the property [Ua, P ] = 0.

Let U = U(n) denote the collection of unitary transformations on Cn. For each V ∈ U ,
define the operator WV : L2(S, dσ)→ L2(S, dσ) by the formula

(2.2) (WV g)(z) = g(V z),

g ∈ L2(S, dσ). By the invariance of σ, WV is a unitary operator on L2(S, dσ).

Let Aut(B) denote the group of biholomorphic bijections on B. If ψ ∈ Aut(B) and if
a ∈ B is such that ψ(a) = 0, then

(2.3) ψ = V ϕa

for some V ∈ U [7,Theorem 2.2.5]. For such a ψ, set

(2.4) Rψ = UaWV .

Then Rψ is a unitary operator on L2(S, dσ) which has the properties that

RψMfR
∗
ψ = Mf◦ψ
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for every f ∈ L∞(S, dσ) and that [Rψ, P ] = 0. Consequently, H2(S) is a reducing subspace
for Rψ, and if we regard Rψ as a unitary operator on H2(S), then

RψTfR
∗
ψ = Tf◦ψ

for every f ∈ L∞(S, dσ).

Let H∞(S) be the collection of bounded analytic functions on B. As usual, each
h ∈ H∞(S) is identified with its boundary value on S. Our first proposition is based on
ideas in Section VI of the paper [4] by Feldman and Rochberg, where the main interest
was Hankel operators with conjugate analytic symbols.

Proposition 2.1. Let h ∈ H∞(S). If h is not a constant, then, on the Hilbert space
L2(S, dσ), the von Neumann algebra generated by

{Mh◦ψ : ψ ∈ Aut(B)}

equals {Mf : f ∈ L∞(S, dσ)}.

Proof. Let ∂1, . . . , ∂n denote the differentiations with respect to the complex variables
z1, . . . , zn respectively. We first show that if h is not a constant, then there exist ψ1, . . . , ψn
∈ Aut(B) such that

(2.5) ∂j(h ◦ ψj)(0) 6= 0, j = 1, . . . , n.

For any analytic function g on B, write grad(g) = (∂1g, . . . , ∂ng). If h is not a constant,
then there exists an a ∈ B such that grad(h)(a) 6= 0. That is, grad(h)(ϕa(0)) 6= 0. Since
the derivative ϕ′a(0) is an invertible n× n matrix [7,Theorem 2.2.2(ii)], by the chain rule,
we have grad(h ◦ ϕa)(0) 6= 0. That is, there is at least one ν ∈ {1, . . . , n} such that

∂ν(h ◦ ϕa)(0) 6= 0.

By simple transpositions of coordinates, we see that there are V1, . . . , Vn ∈ U such that
∂j(h ◦ ϕa ◦ Vj)(0) 6= 0 for j = 1, . . . , n. Thus (2.5) holds for ψj = ϕa ◦ Vj = VjϕV ∗

j
a,

j = 1, . . . , n.

Let Tn denote the n-dimensional torus {(τ1, . . . , τn) : |τ1| = · · · = |τn| = 1}. Let dmn

be the Lebesgue measure on Tn with the normalization mn(Tn) = 1. Now, for each pair
of j ∈ {1, . . . , n} and τ = (τ1, . . . , τn) ∈ Tn, define the function

η(j)
τ (z1, . . . , zn) = (h ◦ ψj)(τ1z1, . . . , τnzn).

Then, of course, we still have η(j)
τ ∈ {h ◦ ψ : ψ ∈ Aut(B)}. Using power-series expansion,

it is straightforward to verify that for each j ∈ {1, . . . , n},∫
τ̄jMη

(j)
τ
dmn(τ) = ∂j(h ◦ ψj)(0)Mzj .
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By (2.5), this means that the von Neumann algebra generated by {Mh◦ψ : ψ ∈ Aut(B)}
contains Mz1 , . . . ,Mzn . Since Mz1 , . . . ,Mzn generate the von Neumann algebra {Mf : f ∈
L∞(S, dσ)}, this completes the proof. �

3. Main Results

To better state our results, let us introduce the following terminology:

Definition 3.1. Let Λ be a non-empty set of inner functions. We say that the set Λ
is Toeplitz-determining if it has the property that for A ∈ B(H2(S)), the condition that
TūATu = A for every u ∈ Λ implies that A is a Toeplitz operator on H2(S).

The following is our main result:

Theorem 3.2. Let Λ be a non-empty set of inner functions. Let N (Λ) denote the von
Neumann algebra generated by

{Mu : u ∈ Λ}

on the Hilbert space L2(S, dσ). Then the set Λ is Toeplitz-determining if and only if
N (Λ) = {Mf : f ∈ L∞(S, dσ)}.

Proof. First, assuming that N (Λ) = {Mf : f ∈ L∞(S, dσ)}, we will show that Λ is
Toeplitz-determining. The set Λ is, of course, a subset of H2(S). Since H2(S) is separable
and since separability is a hereditary property for metric spaces, there is a countable subset
Λ0 of Λ which is dense in Λ with respect to the norm topology of H2(S). We can always
list Λ0 as

Λ0 = {u1, u2, . . . , uk, . . . }

if we allow the possibility uj = uk for distinct j and k.

Now suppose that A is a bounded operator on H2(S) such that

(3.1) TūATu = A for every u ∈ Λ.

To show that A = Tϕ for some ϕ ∈ L∞(S, dσ), we follow the ideas in the proof of [3,Lemma
2.5]. Define the operator

Ã = A⊕ 0

on L2(S, dσ), where the direct sum corresponds to the space decomposition

L2(S, dσ) = H2(S)⊕ {H2(S)}⊥.

For each natural number k, define the operator

Lk =
1
kk

∑
1≤i1,...,ik≤k

M
ū
ik
k

· · ·M
ū
i1
1
ÃM

u
i1
1
· · ·M

u
ik
k

.

It is easy to see that if 1 ≤ j ≤ k, then

(3.2) ‖MūjLkMuj − Lk‖ ≤ 2
kk−1

kk
‖Ã‖ =

2
k
‖A‖.
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Since ‖Lk‖ ≤ ‖Ã‖ = ‖A‖ for every k ≥ 1, there is a strictly increasing sequence of natural
numbers k(1) < k(2) < · · · < k(`) < · · · such that the limit

L = lim
`→∞

Lk(`)

exists in the weak operator topology. Clearly, it follows from (3.2) that MūjLMuj −L = 0
for every j ≥ 1. Since |uj | = 1 a.e. on S, this means that

LMuj = MujL for every j ≥ 1.

Since Λ0 is dense in Λ with respect to the L2-norm, the above implies that L commutes
with {Mu : u ∈ Λ}. Since each Mu, u ∈ Λ, is a unitary operator, it follows that L also
commutes with {Mū : u ∈ Λ}. The assumption N (Λ) = {Mf : f ∈ L∞(S, dσ)} then
leads to the conclusion that L commutes with {Mf : f ∈ L∞(S, dσ)}. Hence there is a
ϕ ∈ L∞(S, dσ) such that L = Mϕ.

Thus to complete the proof that A is a Toeplitz operator, it suffices to show that the
compression of L to the subspace H2(S) equals A. Note that for h, g ∈ H2(S) and natural
numbers 1 ≤ i1, . . . , ik ≤ k, we have

〈M
ū
ik
k

· · ·M
ū
i1
1
ÃM

u
i1
1
· · ·M

u
ik
k

h, g〉 = 〈ÃM
u
i1
1
· · ·M

u
ik
k

h,M
u
i1
1
· · ·M

u
ik
k

g〉

= 〈AT i1u1
· · ·T ikukh, T

i1
u1
· · ·T ikukg〉

= 〈T ikūk · · ·T
i1
ū1
AT i1u1

· · ·T ikukh, g〉 = 〈Ah, g〉,

where the last = follows from repeated applications of (3.1). Thus the compression of each
Lk to H2(S) equals A. Hence A = PL|H2(S) as promised. This proves the “if” part of
the theorem.

To prove the “only if” part, let us now assume that N (Λ) 6= {Mf : f ∈ L∞(S, dσ)}.
We will find a bounded operator Y on H2(S) such that TūY Tu = Y for every u ∈ Λ and
such that Y /∈ {Tf : f ∈ L∞(S, dσ)}.

By the double-commutant relation, the assumption N (Λ) 6= {Mf : f ∈ L∞(S, dσ)}
implies that the commutant of N (Λ) is strictly larger than the commutant of {Mf : f ∈
L∞(S, dσ)}. That is, there is a bounded operator Z which commutes with N (Λ) but which
does not commute with {Mf : f ∈ L∞(S, dσ)}.

Now take any non-constant inner function v constructed by Aleksandrov [1] or Løw [6].
By Proposition 2.1, the unitary operators {Mv◦ψ : ψ ∈ Aut(B)} generate the von Neumann
algebra {Mf : f ∈ L∞(S, dσ)}. Since Z does not commute with {Mf : f ∈ L∞(S, dσ)}, it
follows that there is an inner function w ∈ {v ◦ ψ : ψ ∈ Aut(B)} such that

Mw̄ZMw 6= Z.

We follow the usual multi-index notation [7,page 3]. For each α ∈ Zn+, define the function
εα(z) = zα on S. Then, of course, the linear span of {εαε̄β : α, β ∈ Zn+} is dense in
L2(S, dσ). Hence there are a, b, c, d ∈ Zn+ such that

〈Mw̄ZMwεaε̄b, εcε̄d〉 6= 〈Zεaε̄b, εcε̄d〉.
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Now define the operator X = MεdZMε̄b . Then the above gives us

(3.3) 〈Mw̄XMwεa, εc〉 6= 〈Xεa, εc〉.

Let Y be the compression of X to the subspace H2(S). That is, Y = PX|H2(S). Since
εa, εc ∈ H2(S) and since (1− P )MwP = 0, (3.3) tells us that Tw̄Y Tw 6= Y . Since w is an
inner function, this means that Y is not a Toeplitz operator.

On the other hand, since Z is in the commutant of N (Λ), we have MūZMu = Z
for every u ∈ Λ. Since X = MεdZMε̄b , it follows that MūXMu = X for every u ∈ Λ.
Compressing to the subspace H2(S), we see that TūY Tu = Y for every u ∈ Λ. Thus we
have produced the promised Y . This completes the proof. �

As an immediate consequence of Theorem 3.2 and Proposition 2.1, we have

Corollary 3.3. Let u be a non-constant inner function. Then a bounded operator A on
H2(S) is a Toeplitz operator if and only if

Tu◦ψATu◦ψ = A

for every ψ ∈ Aut(B).

Recall that the unitary operator Rψ defined by (2.4) has the property that R∗ψTfRψ =
Tf◦ψ−1 , f ∈ L∞(S, dσ). In other words, an operator A is a Toeplitz operator if and only
if R∗ψARψ is a Toeplitz operator. In light of this, let us restate Corollary 3.3 as

Corollary 3.4. Let u be a non-constant inner function. Then a bounded operator A on
H2(S) is a Toeplitz operator if and only if

TūR
∗
ψARψTu = R∗ψARψ

for every ψ ∈ Aut(B).

4. Set of a Singleton

Let us now consider the case where Λ is a set of a single inner function. In this case,
the story is actually simpler in complex dimensions n ≥ 2.

Proposition 4.1. Suppose that n ≥ 2. Then for each inner function u, there is a bounded
operator Y on H2(S) such that TūY Tu = Y and such that Y is not a Toeplitz operator.

Proof. Let an inner function u be given and let N (u) denote the von Neumann algebra
generated by the single unitary operator Mu. To prove the proposition, according to
Theorem 3.2, it suffices to show that N (u) 6= {Mf : f ∈ L∞(S, dσ)}.

Let P denote the linear span of all uj and ūk, j, k = 0, 1, 2, . . . . Note that since u is
uni-modulous, N (u) is just the weak closure of {Mξ : ξ ∈ P}. Because of the assumption
n ≥ 2, we have the function

q(z1, . . . , zn) = z1z̄2
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on S. To complete the proof, it suffices to show that Mq is not in the weak closure of
{Mξ : ξ ∈ P}. Assuming the contrary, there would be a sequence {ξi} ⊂ P such that
〈Mξi1, q〉 → 〈Mq1, q〉 as i→∞. In other words, we would have

(4.1) lim
i→∞
〈ξi, q〉 = 〈q, q〉 = ‖q‖2 > 0

for some sequence {ξi} ⊂ P. But for each integer j ≥ 0, the analyticity of uj gives us

〈uj , q〉 = 〈z2u
j , z1〉 = 0.

Similarly, for each integer k ≥ 0, we have

〈ūk, q〉 = 〈z2, z1u
k〉 = 0.

Thus, in the Hilbert space L2(S, dσ), q is orthogonal to the set P. This clearly contradicts
(4.1). This contradiction shows that Mq is not in the weak closure of {Mξ : ξ ∈ P}. �

Proposition 4.2. Suppose that n = 1. If u is an inner function on the unit disc and if u
does not have the form

(4.2) eiθ
a− z
1− āz

, where θ ∈ R and |a| < 1,

then there is a bounded operator Y on H2 such that TūY Tu = Y and such that Y is not a
Toeplitz operator.

Proof. For the given u, again let N (u) denote the von Neumann algebra generated by the
single unitary operator Mu. To prove the proposition, according to Theorem 3.2, it suffices
to show that if u does not have the form (4.2), then N (u) 6= {Mf : f ∈ L∞}.

We only need, of course, to consider the case where u is not a constant. Then

u = bs,

where b is a Blaschke product or a constant, and s is a so-called singular inner function or
a constant. Suppose that u does not have the form (4.2). Then either b has at least two
zeros (counting multiplicity), or s is a non-trivial singular inner function. For such a u it
is well known (and easy to verify) that the dimension of the subspace H2	uH2 is at least
2. Hence there is a q ∈ H2	uH2 with ‖q‖ 6= 0 which is orthogonal to the one-dimensional
subspace C. That is,

(4.3) q ∈ H2, q ⊥ uH2, and q ⊥ C.

Since ‖q‖ 6= 0, there exists a p ∈ L∞ such that 〈p, q〉 6= 0.

As in the previous proof, let P denote the linear span of all uj and ūk, j, k = 0, 1, 2, . . . .
Again, N (u) is just the weak closure of {Mξ : ξ ∈ P}. To complete the proof, it suffices
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to show that Mp is not in the weak closure of {Mξ : ξ ∈ P}. Assuming the contrary, there
would be a sequence {ξi} ⊂ P such that 〈Mξi1, q〉 → 〈Mp1, q〉 as i→∞. In other words,
we would have

(4.4) lim
i→∞
〈ξi, q〉 = 〈p, q〉 6= 0

for some sequence {ξi} ⊂ P. But clearly, (4.3) implies q ⊥ P, which contradicts (4.4).
This contradiction shows that Mp is not in the weak closure of {Mξ : ξ ∈ P}. �
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