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Abstract. Recently, Douglas and Wang proved that for each polynomial q, the submod-
ule [q] of the Bergman module generated by q is essentially normal [9]. Using improved
techniques, we show that the Hardy-space analogue of this result holds, and more.

1. Introduction

Let B be the unit ball in Cn. Throughout the paper, the complex dimension n is
always assumed to be greater than or equal to 2. Recall that the Drury-Arveson space
H2
n is the Hilbert space of analytic functions on B with (1 − 〈ζ, z〉)−1 as its reproducing

kernel. The space H2
n is naturally considered as a Hilbert module over the polynomial ring

C[z1, . . . , zn]. In [3-6], Arveson raised the question of whether graded submodules M of
H2
n are essentially normal. That is, for the restricted operators

ZM,j = Mzj |M, 1 ≤ j ≤ n,

on M, do commutators [Z∗M,j , ZM,i] belong to the Schatten class Cp for p > n? This
problem is commonly referred to as the Arveson conjecture.

Numerous papers have been written on this problem [4,6,7,10,13,14]. In particular,
Guo and Wang showed that the answer to the above question is affirmative if M is gen-
erated by a homogeneous polynomial [14]. In [8], Douglas proposed analogous essential
normality problems for submodules of the Bergman module L2

a(B, dv).

As it turns out, the Bergman space case is more tractable. In fact, the Bergman
space version of the problem was recently solved by Douglas and Wang in [9] for arbitrary
polynomials. In that paper, Douglas and Wang showed that for any polynomial q ∈
C[z1, . . . , zn], the submodule [q] of the Bergman module generated by q is p-essentially
normal for p > n. What is especially remarkable is that [9] contains many novel ideas.

The present paper grew out of a remark in [9]. Toward the end of [9], Douglas and
Wang commented

“It seems likely that the argument in this paper can be generalized to obtain the same
result for the Hardy and the Drury-Arveson spaces. However, while we believe that
both results hold, perhaps techniques from [9,8] may be needed to complete the proofs.”

While the Drury-Arveson space case is out of reach at the moment, in this paper we will
settle the Hardy space case mentioned above, and we will go a little farther than that.
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The key realization is that Bergman space, Hardy space and Drury-Arveson space are
all members of a family of reproducing-kernel Hilbert spaces of analytic functions on B
parametrized by a real-valued parameter −n ≤ t <∞. In fact, the spaces corresponding to
the values t ∈ Z+ were used in an essential way in the proofs in [9]. Our main observation
is that if one considers other values of t, then one will see how to extend the techniques
in [9] beyond the Bergman space case. In short, in this paper we establish the analogue
of the main result in [9] for spaces with parameter −2 < t <∞. Before stating the result,
let us first introduce these spaces.

For each real number −n ≤ t <∞, let H(t) be the Hilbert space of analytic functions
on B with the reproducing kernel

1

(1− 〈ζ, z〉)n+1+t
.

Alternately, one can describe H(t) as the completion of C[z1, . . . , zn] with respect to the
norm ‖ · ‖t arising from the inner product 〈·, ·〉t defined according to the following rules:
〈zα, zβ〉t = 0 whenever α 6= β,

〈zα, zα〉t =
α!∏|α|

j=1(n+ t+ j)

if α ∈ Zn+\{0}, and 〈1, 1〉t = 1. Here and throughout the paper, we use the conventional
multi-index notation [15,page 3].

Obviously, H(0) is the Bergman space L2
a(B, dv). One can view the Bergman space

H(0) = L2
a(B, dv) as a benchmark, against which the other spaces in the family should be

compared. Note that for each −1 < t <∞, H(t) is a weighted Bergman space.

Let S denote the unit sphere {z ∈ Cn : |z| = 1} in Cn. Let σ be the positive, regular
Borel measure on S that is invariant under the orthogonal group O(2n), i.e., the group of
isometries on Cn ∼= R2n that fix 0. We take the usual normalization σ(S) = 1. Recall
that the Hardy space H2(S) is the closure of C[z1, . . . , zn] in L2(S, dσ).

Obviously, H(−1) is just the Hardy space H2(S). Moreover, H(−n) is none other than
the Drury-Arveson space H2

n.

It is well known that for each −n ≤ t < −1, the tuple of multiplication operators
(Mz1 , . . . ,Mzn) is not jointly subnormal on H(t) [1,Theorem 3.9]. In other words, if −n ≤
t < −1, then H(t) is more like the Drury-Arveson space than the Hardy space. The
practical consequence of this is that it is difficult to do estimates on H(t) if −n ≤ t < −1.

Let q ∈ C[z1, . . . , zn]. For each −n ≤ t <∞, let [q](t) denote the closure of

{qf : f ∈ C[z1, . . . , zn]}

in H(t). Since H(t) is a Hilbert module over C[z1, . . . , zn], [q](t) is a submodule. For each
j ∈ {1, . . . , n}, define submodule operator

Z
(t)
q,j = Mzj |[q](t).
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Recall that the submodule [q](t) is said to be p-essentially normal if the commutators

[Z
(t)∗
q,j , Z

(t)
q,i ], i, j ∈ {1, . . . , n}, all belong to the Schatten class Cp. With the foregoing

preparation, we are now ready to state our result.

Theorem 1.1. Let q be an arbitrary polynomial in C[z1, . . . , zn]. Then for each real
number −2 < t <∞, the submodule [q](t) of H(t) is p-essentially normal for every p > n.

Clearly, the Hardy-space case mentioned in [9] is settled by applying Theorem 1.1 to
the special case t = −1.

On the other hand, it is a real pity that the requirement t > −2 in Theorem 1.1 does
not allow us to capture any Drury-Arveson space in dimensions n ≥ 2. But as a consolation,
Theorem 1.1 does cover spaces H(t) for −2 < t < −1, which, as we mentioned, are more
Drury-Arveson-like than Hardy-like.

On the technical side, this paper does offer some improvement over [9]. As the authors
of [9] stated, the key step in the proof of their result rests on weighted norm estimates
given in Section 3 in that paper. At the core of their weighted estimates is an argument
using a covering lemma. This is where we offer the most significant improvement. In this
paper, the covering-lemma argument of [9] is done away with entirely. In its place, we use
a much simpler argument based on Fubini’s theorem.

In fact, using Fubini’s theorem-based argument in place of covering-lemma argument
is a situation with which we are quite familiar. See, for example, the proofs of Proposition
2.6 and Lemma 5.2 in [11].

There are many technical contributions made in [9]. Perhaps, the most important
among these is Lemma 3.2 in that paper. This lemma will again be the basis for analysis
here. The reader will see that with the combination of [9,Lemma 3.2] and our Fubini’s
theorem-based argument, the analysis part of the proof is actually easy.

As it was the case in [9], an essential role in the proof is played by the number operator
N introduced by Arveson in [2]. Recall that, for a polynomial f(z) =

∑
α cαz

α,

(Nf)(z) =
∑
α

cα|α|zα.

Here as well as in [9], the proof boils down to the estimate of an operator series where the
k-th term has the operator

(N + 1 + n+ t)−k−1

as a factor, k ≥ 0. Douglas and Wang’s idea is to factor the above in the form

(N + 1 + n+ t)−k−1 = (N + 1 + n+ t)−1/2 · (N + 1 + n+ t)−k−(1/2),

“reserve” the factor (N + 1 +n+ t)−1/2 for establishing the requisite Schatten-class mem-
bership, and use the other factor, (N +1+n+ t)−k−(1/2), to boost the weight of the space.
This is another place where [9] and the present paper differ. Instead of factoring, we will
apply the whole of (N + 1 + n+ t)−k−1 to boost weight. Proposition 4.2 below allows us
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to recover an equivalent of (N + 1 + n+ t)−1/2 at the end of the estimate. This is why we
are able to push t below −1.

The rest of the paper is organized as follows. Since the analysis part of the proof is
now easy, we will take care of that first, in Sections 2 and 3. Section 4 contains a brief
discussion of the relation between the natural embedding H(t) → H(t+1) and norm ideals.
Section 5, which mirrors Section 2 in [9], contains the proof of our result.

2. Derivative on the Disc

Write D for the open unit disc {z ∈ C : |z| < 1} in the complex plane. Let dA be the
area measure on D with the normalization A(D) = 1. The unit circle {τ ∈ C : |τ | = 1} will
be denote by T. Furthermore, let dm be the Lebesgue measure on T with the normalization
m(T) = 1. For convenience, we write ∂ for the one-variable differentiation d/dz on C.

Our first lemma is basically a restatement of Lemma 3.2 in [9].

Lemma 2.1. Suppose that g is a one-variable polynomial of degree K ≥ 1, and that f is
analytic on D. Then for each k ∈ N we have

|(∂kg)(0)f(0)|2 ≤ 22k+2(K!)2
∫
|gf |2dA.

Proof. For each 0 ≤ r < 1, let gr(z) = g(rz) and fr(z) = f(rz). We only need to consider
the case 1 ≤ k ≤ K. For such a k, Lemma 3.2 in [9] tells us that |(∂kgr)(0)fr(0)| ≤
K!
∫
T
|grfr|dm. Since (∂kgr)(0) = rk(∂kg)(0) and fr(0) = f(0), we have

|(∂kg)(0)f(0)| = 2

∫ 1

1/2

r−k|(∂kgr)(0)fr(0)|dr ≤ 2K!

∫ 1

1/2

r−k
∫
T

|gr(τ)fr(τ)|dm(τ)dr

≤ 2k+1K!

∫ 1

1/2

2r

∫
T

|g(rτ)f(rτ)|dm(τ)dr ≤ 2k+1K!

∫
|gf |dA.

Squaring both sides and applying the Cauchy-Schwarz inequality, the lemma follows. �

For each z ∈ D, define the disc D(z) = {w ∈ D : |w − z| < (1/2)(1− |z|)}.

Lemma 2.2. For all w ∈ D and x ∈ (−1,∞), we have∫
(1− |z|2)x

A(D(z))
χD(z)(w)dA(z) ≤ 22max{x,0}+5(1− |w|2)x.

Proof. Let w ∈ D, and let z ∈ D be such that w ∈ D(z). Then we have 1 − |w| ≤
1− |z|+ |z−w| < (3/2)(1− |z|). Also, 1− |z| ≤ 1− |w|+ |w− z| ≤ 1− |w|+ (1/2)(1− |z|).
After cancellation, we find (1/2)(1− |z|) ≤ 1− |w|. Thus

(2.1) (2/3)(1− |w|) ≤ 1− |z| ≤ 2(1− |w|) whenever w ∈ D(z).
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From this we obtain that for w ∈ D(z) and x ∈ (−1,∞),

(1− |z|2)x ≤

 22x(1− |w|2)x if 0 ≤ x <∞

3(1− |w|2)x if −1 < x < 0
.

Thus, to complete the proof, it suffices to show that

(2.2)

∫
χD(z)(w)

A(D(z))
dA(z) ≤ 9

for every w ∈ D. For each w ∈ D, let G(w) = {z ∈ D : w ∈ D(z)}. If z ∈ G(w), then
|z−w| ≤ (1/2)(1−|z|) ≤ 1−|w| by (2.1). Hence A(G(w)) ≤ (1−|w|)2. On the other hand,
if z ∈ G(w), then A(D(z)) = (1/4)(1 − |z|)2 ≥ (1/3)2(1 − |w|)2, also by (2.1). Clearly,
(2.2) follows from these two inequalities. �

Proposition 2.3. Suppose that g is a one-variable polynomial of degree K ≥ 1, and that
f is analytic on D. Then for all k ∈ N and t ∈ (0,∞) satisfying the condition t−2k > −1,∫

|(∂kg)(z)f(z)|2(1− |z|2)tdA(z)

≤ 26k+2max{t−2k,0}+7(K!)2
∫
|g(w)f(w)|2(1− |w|2)t−2kdA(w).

Proof. Define gz(u) = g(z + (1/2)(1 − |z|)u) and fz(u) = f(z + (1/2)(1 − |z|)u) for each
z ∈ D. Then 2−k(1− |z|)k(∂kg)(z) = (∂kgz)(0) and f(z) = fz(0). By Lemma 2.1,

|(∂kg)(z)f(z)|2 =
22k|(∂kgz)(0)fz(0)|2

(1− |z|)2k
≤ 24k+2(K!)2

(1− |z|)2k

∫
|gz(u)fz(u)|2dA(u)

=
24k+2(K!)2

(1− |z|)2k
· 1

A(D(z))

∫
D(z)

|g(w)f(w)|2dA(w).

Therefore, if t− 2k > −1, then∫
|(∂kg)(z)f(z)|2(1− |z|2)tdA(z)

≤ 26k+2(K!)2
∫

(1− |z|2)t−2k

A(D(z))

(∫
D(z)

|g(w)f(w)|2dA(w)

)
dA(z)

= 26k+2(K!)2
∫ {∫

(1− |z|2)t−2k

A(D(z))
χD(z)(w)dA(z)

}
|g(w)f(w)|2dA(w)

≤ 26k+2max{t−2k,0}+7(K!)2
∫

(1− |w|2)t−2k|g(w)f(w)|2dA(w),

where the last step is an application of Lemma 2.2. This completes the proof. �
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3. Derivatives on the Ball

Recall that there is a constant A0 ∈ (2−n,∞) such that

(3.1) 2−nrn ≤ σ({ξ ∈ S : |1− 〈u, ξ〉| < r}) ≤ A0r
n

for all u ∈ S and 0 < r ≤ 2 [15,Proposition 5.1.4]. For each z ∈ B, define the subset

T (z) = {w ∈ B : |1− 〈w, z〉| < 2(1− |z|2), 1− |w|2 > (1/2)(1− |z|2)}

of the unit ball. We begin our estimates with the properties of the set T (z).

Let dv be the volume measure on B with the normalization v(B) = 1.

Lemma 3.1. There is a constant 0 < C3.1 <∞ such that for all ζ ∈ B and x ∈ (−1,∞),∫
(1− |z|2)x−n−1χT (z)(ζ)dv(z) ≤ C3.12max{x,0}(1− |ζ|2)x.

Proof. Let ζ, z ∈ B be such that ζ ∈ T (z). Then we have 1−|ζ|2 ≤ 2(1−|ζ|) ≤ 2|1−〈ζ, z〉|
< 4(1− |z|2). Combining this with the condition 1− |ζ|2 > (1/2)(1− |z|2), we have

(3.2) (1/4)(1− |ζ|2) ≤ 1− |z|2 ≤ 2(1− |ζ|2).

Therefore, for x ∈ (−1,∞) we have

(1− |z|2)x ≤

 2x(1− |ζ|2)x if 0 ≤ x <∞

4(1− |ζ|2)x if −1 < x < 0
.

Thus, to complete the proof, it suffices to show that there is a 0 < C <∞ such that

(3.3)

∫
χT (z)(ζ)

(1− |z|2)n+1
dv(z) ≤ C

for every ζ ∈ B. Given a ζ ∈ B, consider the set Ω(ζ) = {z ∈ B : ζ ∈ T (z)}. Write ζ = |ζ|η
with η ∈ S. If z = |z|ξ ∈ Ω(ζ), where ξ ∈ S, then |1− 〈η, ξ〉| ≤ 2|1− 〈ζ, z〉| < 4(1− |z|2)
< 8(1− |ζ|2). Also, 1− |z| ≤ |1− 〈ζ, z〉| < 4(1− |ζ|2) if z ∈ Ω(ζ). Hence

Ω(ζ) ⊂ {rξ : 0 < 1− r < 4(1− |ζ|2); ξ ∈ S, |1− 〈η, ξ〉| < 8(1− |ζ|2)}.

By (3.1) and the decomposition dv = 2nr2n−1drdσ, there is a 0 < C1 < ∞ such that
v(Ω(ζ)) ≤ C1(1− |ζ|2)n+1 for every ζ ∈ B. By (3.2), (1− |z|2)−n−1 ≤ 4n+1(1− |ζ|2)−n−1

when z ∈ Ω(ζ). Clearly, (3.3) follows from these two inequalities. �

Lemma 3.2. There is a constant 0 < ε < 1 such that for each 0 ≤ a < 1, the set
T ((a, 0, . . . , 0)) contains the polydisc

(3.4) Pa = {(a+ u, ζ2, . . . , ζn) : |u| < ε(1− a2), |ζj | < ε
√

1− a2, 2 ≤ j ≤ n}.
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Proof. Given an a ∈ [0, 1), write α = (a, 0, . . . , 0). Let 0 < ε < 1, and suppose that u
and ζ2, . . . , ζn satisfy the conditions |u| < ε(1− a2) and |ζj | < ε

√
1− a2, 2 ≤ j ≤ n. Then

consider the vector w = (a+u, ζ2, . . . , ζn). We have |1−〈w,α〉| = |1−a2−au| < (1+ε)(1−
a2). Moreover, 1−|w|2 = 1−|a+u|2− (|ζ2|2 + · · ·+ |ζn|2) ≥ 1−|a+u|2− (n−1)ε2(1−a2).
On the other hand, 1−|a+u|2 = 1−(a2+2Re(au)+ |u|2) ≥ 1−a2−3|u| ≥ (1−3ε)(1−a2).
Hence 1− |w|2 ≥ (1− (n+ 2)ε)(1− a2). Thus ε = {3(n+ 2)}−1 suffices for our purpose. �

As usual, write ∂1, . . . , ∂n for the differentiations with respect to the complex variables
z1, . . . , zn. For each vector b = (b1, . . . , bn) ∈ Cn, define the directional derivative

∂b = b1∂1 + · · ·+ bn∂n.

Lemma 3.3. There is a constant 0 < C3.3 < ∞ such that the following estimate holds:
Suppose that q ∈ C[z1, . . . , zn] and that deg(q) = K ≥ 1. Let f ∈ C[z1, . . . , zn]. If z and b
are vectors in B\{0} satisfying the relation 〈b, z〉 = 0, then

|(∂bq)(z)f(z)|2 ≤ C3.3(K!)2

(1− |z|2)n+2

∫
T (z)

|qf |2dv.

Proof. Consider the special case where z = α = (a, 0, . . . , 0) for some 0 < a < 1. Let ε be
the constant provided by Lemma 3.2. Define the polydisc

Y = {(a+ u, 0, ζ3, . . . , ζn) : |u| < ε(1− a2), |ζj | < ε
√

1− a2, 3 ≤ j ≤ n}.

For each y ∈ Y , we define the one-varible polynomial qy(w) = q(y + ε
√

1− a2we2), where
e2 = (0, 1, 0, . . . , 0). Similarly, define fy(w) = f(y+ ε

√
1− a2we2) on D. Since (∂qy)(0) =

ε
√

1− a2(∂2q)(y) and fy(0) = f(y), we apply Lemma 2.1 to obtain

|(∂2q)(y)f(y)|2 =
|(∂qy)(0)fy(0)|2

ε2(1− a2)
≤ 16(K!)2

ε2(1− a2)

∫
|qy(w)fy(w)|2dA(w).

Making the substitution ζ2 = ε
√

1− a2w, we find that

|(∂2q)(y)f(y)|2 ≤ 16(K!)2

ε4(1− a2)2

∫
|ζ2|<ε

√
1−a2

|q(y + ζ2e2)f(y + ζ2e2)|2dA(ζ2).

Now, integrating both sides over Y , we see that

ε2n−2(1− a2)n|(∂2q)(α)f(α)|2 ≤
∫
Y

|(∂2q)(y)f(y)|2dy ≤ 16C(K!)2

ε4(1− a2)2

∫
Pa

|qf |2dv,

where Pa is given by (3.4) and C accounts for the normalization constants for the measures
involved. Since Lemma 3.2 tells us that Pa ⊂ T (α), we have

|(∂2q)(α)f(α)|2 ≤ 16ε−(2n+2)C(K!)2

(1− a2)n+2

∫
T (α)

|qf |2dv.
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Obviously, the above inequality also holds if we replace ∂2 by ∂j for any 2 ≤ j ≤ n.
Applying these and the Cauchy-Schwarz inequality, we see that

|(∂bq)(α)f(α)|2 ≤ (n− 1)
16ε−(2n+2)C(K!)2

(1− a2)n+2

∫
T (α)

|qf |2dv if 〈b, α〉 = 0, b ∈ B.

This proves the lemma in the special case where z = α = (a, 0, . . . , 0), 0 < a < 1.
The general case follows from this special case and the following easily-verified relations:
If U is any unitary transformation on Cn and w, b ∈ B, then UT (w) = T (Uw) and
(∂b(q ◦ U))(w) = (∂Ubq)(Uw). �

Following [9], for each pair of i 6= j in {1, . . . , n} we define Li,j = z̄j∂i − z̄i∂j .

Proposition 3.4. There is a constant 1 ≤ C3.4 < ∞ such that the following estimate
holds: Suppose that q ∈ C[z1, . . . , zn] and that deg(q) = K ≥ 1. Let f ∈ C[z1, . . . , zn].
Then for every positive number t > 0 and all integers i 6= j in {1, . . . , n}, we have∫

|(Li,jq)(z)f(z)|2(1− |z|2)tdv(z) ≤ C3.42t(K!)2
∫
|q(ζ)f(ζ)|2(1− |ζ|2)t−1dv(ζ).

Proof. It follows from Lemma 3.3 that

|(Li,jq)(z)f(z)|2 ≤ C3.3(K!)2

(1− |z|2)n+2

∫
T (z)

|q(ζ)f(ζ)|2dv(ζ),

z ∈ B. Multiplying both sides by (1− |z|2)t and integrating, we find that∫
|(Li,jq)(z)f(z)|2(1− |z|2)tdv(z)

≤ C3.3(K!)2
∫ (

(1− |z|2)t−n−2
∫
T (z)

|q(ζ)f(ζ)|2dv(ζ)

)
dv(z)

= C3.3(K!)2
∫ {∫

(1− |z|2)t−n−2χT (z)(ζ)dv(z)

}
|q(ζ)f(ζ)|2dv(ζ).

Applying Lemma 3.1 with x = t− 1 to the {· · · } above, the proposition follows. �

Write R = z1∂1 + · · ·+ zn∂n, the radial derivative in n variables. We will denote the
one-variable radial derivative by R. For each polynomial h and each ξ ∈ S, define the
“slice” function hξ(z) = h(zξ), z ∈ D. If q is a polynomial in n variables, then for every
ξ ∈ S we have the relation (Rqξ)(z) = (Rq)ξ(z).

Proposition 3.5. There is a constant 1 ≤ C3.5 < ∞ such that the following estimate
holds: Suppose that q ∈ C[z1, . . . , zn] and that deg(q) = K ≥ 1. Let f ∈ C[z1, . . . , zn].
Then for each pair of k ∈ N and t ∈ (0,∞) satisfying the condition t− 2k > −1,∫

|(Rkq)(ζ)f(ζ)|2(1− |ζ|2)tdv(ζ) ≤ CK(k+t)
3.5 (K!)2

∫
|q(ζ)f(ζ)|2(1− |ζ|2)t−2kdv(ζ).
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Proof. As in [9], we need the following relation between dv, dσ and dA: Since dv =
2nr2n−1drdσ, dA = 2rdrdm, and dσ is invariant under rotation, we have

(3.5)

∫
gdv = n

∫ (∫
g(zξ)|z|2n−2dA(z)

)
dσ(ξ).

By Lemma 3.6 in [9], for each k ∈ N,

(3.6) Rk =
k∑
j=1

a
(k)
j zj∂j with |a(k)j | < (j + 1)k.

Since the degree of q equals K, for each ξ ∈ S we have

(Rkq)ξ(z) = (Rkqξ)(z) =

min{k,K}∑
j=1

a
(k)
j zj(∂jqξ)(z).

Given f , for each ξ ∈ S we define the “rigged” slice function f (ξ)(z) = zn−1f(zξ), z ∈ D.
Applying first (3.6) and then Proposition 2.3, when t− 2k > −1, we have∫
|(Rkqξ)(z)f (ξ)(z)|2(1− |z|2)tdA(z)

≤ K(K + 1)2k
min{k,K}∑

j=1

∫
|(∂jqξ)(z)f (ξ)(z)|2(1− |z|2)tdA(z)

≤ K(K + 1)2k
min{k,K}∑

j=1

26j+2max{t−2j,0}+7(K!)2
∫
|qξ(z)f (ξ)(z)|2(1− |z|2)t−2jdA(z)

≤ K2(K + 1)2k26k+2t+7(K!)2
∫
|qξ(z)f (ξ)(z)|2(1− |z|2)t−2kdA(z)

≤ CK(k+t)
3.5 (K!)2

∫
|qξ(z)f (ξ)(z)|2(1− |z|2)t−2kdA(z).

By the relations (Rkqξ)(z) = (Rkq)ξ(z), f
(ξ)(z) = zn−1f(zξ) and |z| = |zξ|, we now have∫

|(Rkq)(zξ)f(zξ)|2(1− |zξ|2)t|z|2n−2dA(z)

≤ CK(k+t)
3.5 (K!)2

∫
|q(zξ)f(zξ)|2(1− |zξ|2)t−2k|z|2n−2dA(z).

Integrating both sides with respect to the measure dσ on S and applying (3.5), the propo-
sition follows. �

Proposition 3.6. There is a constant 1 ≤ C3.6 < ∞ such that the following estimate
holds: Suppose that q ∈ C[z1, . . . , zn] and that deg(q) = K ≥ 1. Let f ∈ C[z1, . . . , zn].
Then for each t ∈ (1,∞) and each j ∈ {1, . . . , n}, we have

(3.7)

∫
|(∂jq)(ζ)f(ζ)|2(1− |ζ|2)tdv(ζ) ≤ CKt3.6(K!)2

∫
|q(ζ)f(ζ)|2(1− |ζ|2)t−2dv(ζ).

9



Proof. There is a C such that for every analytic function h on B and every t > 0, we have

(3.8)

∫
|ζ|<1/2

|h(ζ)|2(1− |ζ|2)tdv(ζ) ≤ C
(

16

7

)t ∫
1/2≤|ζ|<3/4

|h(ζ)|2(1− |ζ|2)tdv(ζ).

Now apply Proposition 3.4 and the case k = 1 in Proposition 3.5: by the identity |z|2∂j =
z̄jR+

∑
i 6=j ziLj,i, (3.7) obviously holds if (∂jq)(ζ) is replaced by |ζ|2(∂jq)(ζ) on the left-

hand side. The extra factor |ζ|2 is then removed by using (3.8). �

4. Embedding and Norm Ideals

For a bounded operator A, we write its s-numbers as s1(A), . . . , sk(A), . . . as usual.
Recall that, for each 1 ≤ p <∞, the formula

(4.1) ‖A‖+p = sup
k≥1

s1(A) + s2(A) + · · ·+ sk(A)

1−1/p + 2−1/p + · · ·+ k−1/p

defines a symmetric norm for operators [12,Section III.14]. On any Hilbert space H, the
set C+p = {A ∈ B(H) : ‖A‖+p <∞} is a norm ideal [12,Section III.2]. It is well known that
if p < p′, then C+p is contained in the Schatten class Cp′ .

For a non-increasing sequence of non-negative numbers {a1, . . . , ak, . . . }, if a1 + · · ·+
ak ≤ C(1−1/p + · · · + k−1/p), then kak ≤ C(1−1/p + · · · + k−1/p). It follows that if p > 1
and if T ∈ C+p , then there is a 0 < C(T ) <∞ such that sk(T ) ≤ C(T )k−1/p for every k ∈
N. Thus if p > 1 and if B is a bounded operator such that B∗B ∈ C+p , then B ∈ C+2p.

Proposition 4.1. For each t ≥ −n, let I(t) : H(t) → H(t+1) be the natural embedding.
Then I(t)∗I(t) ∈ C+n .

Proof. Expanding the reproducing kernel (1 − 〈ζ, z〉)−(n+1+t), we see that the standard

orthonormal basis for H(t) is {e(t)α : α ∈ Zn+}, where

(4.2) e(t)α (ζ) =

 1

α!

|α|∏
j=1

(n+ t+ j)

1/2

ζα, α 6= 0,

and e
(t)
0 (ζ) = 1. Given these orthonormal bases, it is straightforward to verify that

I(t)∗I(t)e(t)α =
n+ 1 + t

n+ 1 + |α|+ t
e(t)α , α ∈ Zn+.

This formula gives us all the s-numbers for I(t)∗I(t). By (4.1), I(t)∗I(t) ∈ C+n . �

Proposition 4.2. Suppose that E is a linear subspace of C[z1, . . . , zn] and that t ≥ −n.
Let E(t) be the closure of E in H(t), and let E(t) be the orthogonal projection from H(t)

to E(t). Suppose that A ∈ B(H(t)), and suppose that there is a C such that

(4.3) ‖Ag‖t ≤ C‖g‖t+1
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for every g ∈ E. Then AE(t) ∈ C+2n.

Proof. By (4.3), for each g ∈ E we have

〈A∗Ag, g〉t = ‖Ag‖2t ≤ C2‖g‖2t+1 = C2‖I(t)g‖2t+1 = C2〈I(t)g, I(t)g〉t+1 = C2〈I(t)∗I(t)g, g〉t.

That is, the operator inequality (AE(t))∗AE(t) ≤ C2E(t)I(t)∗I(t)E(t) holds on H(t). Thus
sj((AE(t))∗AE(t)) ≤ sj(C2E(t)I(t)∗I(t)E(t)) for each j ∈ N [12,Lemma II.1.1]. By Proposi-
tion 4.1, (AE(t))∗AE(t) ∈ C+n . Since n ≥ 2, this implies AE(t) ∈ C+2n. �

5. Proof of Theorem 1.1

For each t ≥ −n and each polynomial q, we write M
(t)
q for the operator of multiplica-

tion by q on the space H(t). Keep in mind that the notation “∗” is t-specific: M
(t)∗
q means

the adjoint of M
(t)
q with respect to the inner product 〈·, ·〉t.

Proposition 5.1. Let q ∈ C[z1, . . . , zn], 1 ≤ j ≤ n and t ≥ −n. For f ∈ C[z1, . . . , zn]
satisfying the condition f(0) = 0, we have

M (t)∗
zj M (t)

q f −M (t)
q M (t)∗

zj f =
∞∑
k=0

(N + 1 + n+ t)−k−1(M
(t)

∂jRkq
−M (t)∗

zj M
(t)

Rk+1q
)f.

Proof. The main idea is that both sides are linear with respect to both q and f . Therefore
the proof is a matter of straightforward verification in the special case of q = zα and
f = zβ , β 6= 0, using (4.2). The details of the verification are similar to the Bergman space
case (see the proof of Proposition 2.1 in [9]). �

Proposition 5.2. Let t ≥ −n and ` ∈ N. (1) For each f ∈ C[z1, . . . , zn] satisfying the
condition (∂αf)(0) = 0 for |α| < ` and each non-negative integer k, we have

‖(N + 1 + n+ t)−k−1f‖2t ≤
(n+ 2k + 2 + t+ `)`

(`+ 1 + n+ t)2k+2
‖f‖22k+2+t.

(2) For each f ∈ C[z1, . . . , zn] satisfying the condition (∂αf)(0) = 0 for |α| < ` + 1, each
non-negative integer k and each 1 ≤ j ≤ n, we have

‖(N +1+n+ t)−k−1(M (t)∗
zj −M

(t+2k+2)∗
zj )f‖2t ≤ (2k+4)4

(n+ 2k + 4 + t+ `)2`

(`+ 1 + n+ t)2k+2
‖f‖22k+4+t.

Proof. For (1), it suffices to consider the case where f is a homogeneous polynomial of
degree m ≥ `, as it was the case for the corresponding part in [9]. For such an f ,

‖(N + 1 + n+ t)−k−1f‖2t =
‖f‖2t

(m+ 1 + n+ t)2k+2

=
‖f‖22k+2+t

(m+ 1 + n+ t)2k+2

m∏
j=1

n+ 2k + 2 + t+ j

n+ t+ j
(see (4.2))

=
‖f‖22k+2+t

(m+ 1 + n+ t)2k+2

2k+2∏
j=1

n+m+ t+ j

n+ t+ j
,
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where the last = is obtained by considering
∏2k+2+m
j=1 (n + t + j). Since m ≥ `, for each

j ≥ 1 we have (n+m+ t+ j)/(m+ 1 + n+ t) ≤ (n+ `+ t+ j)/(`+ 1 + n+ t). Hence

‖(N+1 + n+ t)−k−1f‖2t ≤ ‖f‖22k+2+t

2k+2∏
j=1

n+ `+ t+ j

(`+ 1 + n+ t)(n+ t+ j)

=
‖f‖22k+2+t

(`+ 1 + n+ t)2k+2

∏̀
j=1

n+ 2k + 2 + t+ j

n+ t+ j
≤ (n+ 2k + 2 + t+ `)`

(`+ 1 + n+ t)2k+2
‖f‖22k+2+t.

This proves (1).

Let ej be the element in Zn+ whose j-th component is 1 and whose other components
are 0. To prove (2), first note that (4.2) gives us

M (t)∗
zj zα =

αj
n+ t+ |α|

zα−ej

whenever the j-th component αj of α is greater than 0. Hence

(M (t)∗
zj −M (2k+2+t)∗

zj )zα =
αj(2k + 2)

(n+ t+ |α|)(n+ 2k + 2 + t+ |α|)
zα−ej

=
2k + 2

n+ t+ |α|
M (2k+2+t)∗
zj zα.(5.1)

For f ∈ C[z1, . . . , zn] with f(0) = 0, (N + n+ t)−1f is well defined. Thus we can define

ft,k = (N + 1 + n+ 2k + 2 + t)(N + n+ t)−1f.

We have ‖ft,k‖τ ≤ (2k + 4)‖f‖τ for every τ ≥ −n. Obviously, (5.1) implies

(M (t)∗
zj −M (2k+2+t)∗

zj )f = (2k + 2)M (2k+2+t)∗
zj (N + 1 + n+ 2k + 2 + t)−1ft,k

Now suppose that (∂αf)(0) = 0 for |α| < `+ 1. Applying (1) twice, we have

‖(N + 1 + n+ t)−k−1(M (t)∗
zj −M (2k+2+t)∗

zj )f‖2t
= (2k + 2)2‖(N + 1 + n+ t)−k−1M (2k+2+t)∗

zj (N + 1 + n+ 2k + 2 + t)−1ft,k‖2t

≤ (2k + 2)2
(n+ 2k + 2 + t+ `)`

(`+ 1 + n+ t)2k+2
‖M (2k+2+t)∗

zj (N + 1 + n+ 2k + 2 + t)−1ft,k‖22k+2+t

≤ (2k + 2)2
(n+ 2k + 2 + t+ `)`

(`+ 1 + n+ t)2k+2
‖(N + 1 + n+ 2k + 2 + t)−1ft,k‖22k+2+t

≤ (2k + 2)2
(n+ 2k + 2 + t+ `)`

(`+ 1 + n+ t)2k+2
· (n+ 2k + 4 + t+ `)`

(`+ 1 + n+ 2k + 2 + t)2
‖ft,k‖22k+4+t

≤ (2k + 2)2
(n+ 2k + 4 + t+ `)2`

(`+ 1 + n+ t)2k+2
(2k + 4)2‖f‖22k+4+t.
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This completes the proof of (2). �

For each real number t > −1, define

an,t =
1

n!

n∏
j=1

(t+ j).

Using (4.2) and [15,Proposition 1.4.9], it is straightforward to verify that

(5.2) 〈f, g〉t = an,t

∫
f(ζ)g(ζ)(1− |ζ|2)tdv(ζ)

for f, g ∈ H(t), t > −1. In other words, if t > −1, then H(t) is the weighted Bergman
space L2

a(B, an,t(1− |ζ|2)tdv(ζ)).

Our next step requires the assumption that t > −2.

Proposition 5.3. Let real number t > −2 and integer K ≥ 1 be given. Then there is a
constant C5.3 = C5.3(n,K, t) such that the following estimate holds: Let q ∈ C[z1, . . . , zn] be
such that deg(q) = K. Suppose that f ∈ C[z1, . . . , zn] satisfies the condition (∂αf)(0) = 0
for |α| ≤ `+ 1, where ` ∈ N. Then for every integer k ≥ 0 and every j ∈ {1, . . . , n},

‖(N + 1 + n+ t)−k−1(M
(t)

∂jRkq
−M (t)∗

zj M
(t)

Rk+1q
)f‖t

≤ (n+ 2k + 4 + t+ `)`+2

(`+ 1 + n+ t)k+1
Ck+1

5.3 ‖qf‖t+1.

Proof. Since

M
(t)

∂jRkq
−M (t)∗

zj M
(t)

Rk+1q
= (M

(t)

∂jRkq
−M (2k+2+t)∗

zj M
(t)

Rk+1q
)− (M (t)∗

zj −M (2k+2+t)∗
zj )M

(t)

Rk+1q
,

we have

(5.3) ‖(N + 1 + n+ t)−k−1(M
(t)

∂jRkq
−M (t)∗

zj M
(t)

Rk+1q
)f‖t ≤ A+B,

where

A = ‖(N + 1 + n+ t)−k−1(M
(t)

∂jRkq
−M (2k+2+t)∗

zj M
(t)

Rk+1q
)f‖t and

B = ‖(N + 1 + n+ t)−k−1(M (t)∗
zj −M (2k+2+t)∗

zj )M
(t)

Rk+1q
f‖t.

We estimate A and B separately. For A, we apply Proposition 5.2(1), which gives us

A ≤ (n+ 2k + 2 + t+ `)`

(`+ 1 + n+ t)k+1
‖(M (t)

∂jRkq
−M (2k+2+t)∗

zj M
(t)

Rk+1q
)f‖2k+2+t

=
(n+ 2k + 2 + t+ `)`

(`+ 1 + n+ t)k+1
‖(M (2k+2+t)

∂jRkq
−M (2k+2+t)∗

zj M
(2k+2+t)

Rk+1q
)f‖2k+2+t.(5.4)
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Since t > −2, we have 2k + 2 + t > 0 for each k ≥ 0. Hence H(2k+2+t) is a weighted
Bergman space. By (5.2), we have

‖(M (2k+2+t)

∂jRkq
−M (2k+2+t)∗

zj M
(2k+2+t)

Rk+1q
)f‖2k+2+t

≤ a1/2n,2k+2+t

(∫
|{(∂jRkq)(z)− z̄j(Rk+1q)(z)}f(z)|2(1− |z|2)2k+2+tdv(z)

)1/2

.

The identity ∂j − z̄jR = (1− |z|2)∂j +
∑
i 6=j ziLj,i then leads to

‖(M (2k+2+t)

∂jRkq
−M (2k+2+t)∗

zj M
(2k+2+t)

Rk+1q
)f‖2k+2+t

≤ a1/2n,2k+2+t

(∫
|(∂jRkq)(z)f(z)|2(1− |z|2)2k+4+tdv(z)

)1/2

+ a
1/2
n,2k+2+t

∑
i 6=j

(∫
|(Lj,iRkq)(z)f(z)|2(1− |z|2)2k+2+tdv(z)

)1/2

.(5.5)

Applying Propositions 3.6 and 3.5, we have∫
|(∂jRkq)(z)f(z)|2(1− |z|2)2k+4+tdv(z)

≤ CK(2k+4+t)
3.6 (K!)2

∫
|(Rkq)(z)f(z)|2(1− |z|2)2k+2+tdv(z)

≤ (C3.6C3.5)K(3k+4+t)(K!)4
∫
|q(z)f(z)|2(1− |z|2)2+tdv(z).(5.6)

Since 1 + t > −1, we can apply Propositions 3.4 and 3.5 to obtain∫
|(Lj,iRkq)(z)f(z)|2(1− |z|2)2k+2+tdv(z)

≤ C3.422k+2+t(K!)2
∫
|(Rkq)(z)f(z)|2(1− |z|2)2k+1+tdv(z)

≤ C3.4(2C3.5)K(3k+2+t)(K!)4
∫
|q(z)f(z)|2(1− |z|2)1+tdv(z).(5.7)

By the assumption t > −2, we have an,1+t ≥ (n!)−1(2 + t)n. Also note that an,2k+2+t ≤
(n!)−1(n+ 2k + 2 + t)n. Combining (5.5), (5.6), (5.7) and (5.2), we see that there is a C1

that depends only on n,K and t (> −2) such that

‖(M (2k+2+t)

∂jRkq
−M (2k+2+t)∗

zj M
(2k+2+t)

Rk+1q
)f‖2k+2+t ≤ Ck+1

1 ‖qf‖t+1.

Recalling (5.4), this gives us

(5.8) A ≤ (n+ 2k + 2 + t+ `)`

(`+ 1 + n+ t)k+1
Ck+1

1 ‖qf‖t+1.
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It follows from Proposition 5.2(2) that

B ≤ (n+ 2k + 4 + t+ `)`+2

(`+ 1 + n+ t)k+1
‖M (t)

Rk+1q
f‖2k+4+t.

Applying (5.2) and Proposition 3.5, we obtain

‖M (t)

Rk+1q
f‖22k+4+t = an,2k+4+t

∫
|(Rk+1q)(z)f(z)|2(1− |z|2)2k+4+tdv(z)

≤ an,2k+4+tC
K(3k+5+t)
3.5 (K!)2

∫
|q(z)f(z)|2(1− |z|2)2+tdv(z).

Thus there is a C2 that depends only on n,K and t (> −2) such that ‖M (t)

Rk+1q
f‖2k+4+t ≤

Ck+1
2 ‖qf‖t+1. Consequently,

B ≤ (n+ 2k + 4 + t+ `)`+2

(`+ 1 + n+ t)k+1
Ck+1

2 ‖qf‖t+1.

Combining this with (5.8) and (5.3), the proof of the proposition is complete. �

Proof of Theorem 1.1. Let q ∈ C[z1, . . . , zn] be such that deg(q) = K, K ≥ 1. Let t > −2
also be given. For this pair of K and t, let C5.3 = C5.3(n,K, t) be the constant provided
by Proposition 5.3. Let ` ∈ N satisfy the condition

(5.9) `+ 1 + n+ t > 2C5.3.

With this `, we now define

E = {qf : f ∈ C[z1, . . . , zn], (∂αf)(0) = 0 for |α| ≤ `+ 1}.

For the given q, let Q(t) denote the orthogonal projection from H(t) onto H(t)	 [q](t). Let
j ∈ {1, . . . , n}, and let f ∈ C[z1, . . . , zn] be such that (∂αf)(0) = 0 for |α| ≤ `+ 1. Then

Q(t)M (t)∗
zj qf = Q(t)M (t)∗

zj M (t)
q f = Q(t)(M (t)∗

zj M (t)
q −M (t)

q M (t)∗
zj )f.

Applying Propositions 5.1 and 5.3, we have

‖Q(t)M (t)∗
zj qf‖t ≤

∞∑
k=0

‖(N + 1 + n+ t)−k−1(M
(t)

∂jRkq
−M (t)∗

zj M
(t)

Rk+1q
)f‖t

≤
∞∑
k=0

(n+ 2k + 4 + t+ `)`+2

(`+ 1 + n+ t)k+1
Ck+1

5.3 ‖qf‖t+1.(5.10)

Set

C =
∞∑
k=0

(n+ 2k + 4 + t+ `)`+2

(`+ 1 + n+ t)k+1
Ck+1

5.3 .
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Then (5.9) ensures that C <∞. Thus (5.10) can be restated as

‖Q(t)M (t)∗
zj g‖t ≤ C‖g‖t+1 for every g ∈ E.

Let E(t) be the closure of E in H(t), and let E(t) : H(t) → E(t) be the orthogonal projection.
By Proposition 4.2, the above implies that

Q(t)M (t)∗
zj E

(t) ∈ C+2n.

Obviously, E(t) is a subspace of [q](t) of finite codimension. That is, if P (t) denotes the
orthogonal projection from H(t) onto [q](t), then rank(P (t) − E(t)) <∞. Therefore

Q(t)M (t)∗
zj P (t) ∈ C+2n.

Combining this with the well-known fact that [M
(t)∗
zj ,M

(t)
zi ] ∈ C+n , it follows from a routine

argument that [Z
(t)∗
q,j , Z

(t)
q,i ] ∈ C+n , i, j ∈ {1, . . . , n}. This completes the proof. �
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