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Abstract. Let H2(S) be the Hardy space on the unit sphere S in Cn. We establish
a local inequality for Hankel operators Hf = (1 − P )Mf |H2(S). As an application of
this local inequality, we characterize the membership of Hf in the Lorentz-like ideal C+

p ,
2n < p <∞.

1. Introduction

Throughout the paper, let S denote the unit sphere {z ∈ Cn : |z| = 1} in Cn. We
assume that the complex dimension n is greater than or equal to 2. Let σ be the positive,
regular Borel measure on S that is invariant under the orthogonal group O(2n), i.e., the
group of isometries on Cn ∼= R2n which fix 0. As usual, the measure σ is normalized in
such a way that σ(S) = 1.

Recall that the Hardy space H2(S) is the closure of C[z1, . . . , zn] in L2(S, dσ). Let
P be the orthogonal projection from L2(S, dσ) onto H2(S). Then the Hankel operator
Hf : H2(S)→ L2(S, dσ)	H2(S) is defined by the formula

Hf = (1− P )Mf |H2(S).

There is a rich literature on various kinds of Hankel operators. See, e.g., [1,2,4-6,9-13,19].
This paper falls within the so-called “one-sided” theory of Hankel operators. We remind
the reader that the term “one-sided” theory refers to the study of the Hankel operator Hf

alone, whereas the simultaneous study of the pair Hf and Hf̄ is called “two-sided” theory.
By virtue of the identity

[Mf , P ] = Hf −H∗f̄ ,

“two-sided” theory is equivalent to the study of the commutator [Mf , P ]. By contrast,
“one-sided” theory must deal with Hankel operators Hf that cannot be expressed in the
form of [Mg, P ], g ∈ L2(S, dσ), which poses a much greater challenge.

Let us write B for the open unit ball {z ∈ Cn : |z| < 1} in Cn. Furthermore, write

kz(w) =
(1− |z|2)n/2

(1− 〈w, z〉)n
, |z| < 1, |w| ≤ 1.

Then kz is the normalized reproducing kernel for the Hardy space H2(S). In the study of
Hankel operators, an extremely important role is played by the scalar quantity

Var(f ; z) = ‖(f − 〈fkz, kz〉)kz‖2,

Keywords. Hankel operator, local inequality, norm ideal.

1



f ∈ L2(S, dσ), z ∈ B. One can think of Var(f ; z) as the “variance” of f with respect to
the probability measure |kz|2dσ on S, hence the notation.

It was shown in [16] that for f ∈ L2(S, dσ), the Hankel operator Hf is bounded
if and only if f − Pf ∈ BMO, which is equivalent to the boundedness of the function
z 7→ Var(f − Pf ; z) on B. Also, Hf is compact if and only if f − Pf ∈ VMO [16], which
is equivalent to

lim
|z|↑1

Var(f − Pf ; z) = 0.

In [5] we proved that Hf belongs to the Schatten class Cp, 2n < p <∞, if and only if∫
Varp/2(f − Pf ; z)dλ(z) <∞,

where dλ is the standard Möbius-invariant measure on B.

What sets the “two-sided” theory of Hankel operators apart from the “one-sided”
theory is just one thing: If one has both Hankel operators Hf and Hf̄ available, then one
has the local inequality

(1.1) Var(f ; z) ≤ ‖Hfkz‖2 + ‖Hf̄kz‖2

for every z ∈ B (see [15,(6.4)]). Most of the difficulties that are particular to the “one-
sided” theory of Hankel operators can be traced to the single fact that there is nothing
comparable to (1.1) in the “one-sided” theory. Nothing, that is, up to this point.

One of the motivations for this paper is to find a local inequality analogous to (1.1)
in the context of the “one-sided” theory of Hankel operators. This we manage to do. As
it turns out, our “one-sided” analogue of (1.1) enables us to characterize the membership
of the Hankel operator Hf in the Lorentz-like ideal C+

p , 2n < p <∞.

To state our result, we first need to introduce a sequence of contractions in the radial
direction of the ball. For each pair of j ∈ N and z ∈ B, define

(1.2) ρj(z) =

 (1− 4j(1− |z|2))1/2(z/|z|) if 4j(1− |z|2) < 1;

0 if 4j(1− |z|2) ≥ 1.

To better understand these contractions, notice the following relations: we have

(1.3)

 ρj(z)/|ρj(z)| = z/|z| and

1− |ρj(z)|2 = 4j(1− |z|2)

if 4j(1− |z|2) < 1.

Recall form [5] that for each z ∈ B, we define the Schur multiplier

(1.4) mz(w) =
1− |z|

1− 〈w, z〉
, |w| ≤ 1.
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Obviously, the corresponding multiplication operator Mmz is a contraction on L2(S, dσ).
Note in particular that m0 is just the constant function 1. With all the ingredients ex-
plained, we can now present our “one-sided” analogue of (1.1).

Theorem 1.1. Given any 0 < δ ≤ 1/2, there exists a constant 0 < C(δ) < ∞ which
depends only on δ and the complex dimension n such that the inequality

(1.5) Var1/2(f − Pf ; z) ≤ C(δ)
∞∑
j=1

1

2(1−δ)j ‖Mmρj(z)
Hfkρj(z)‖

holds for all f ∈ L2(S, dσ) and z ∈ B.

Since ‖Mmz‖ = ‖mz‖∞ = 1, a slightly weaker, but perhaps aesthetically more pleasing
version of (1.5) is

(1.6) Var1/2(f − Pf ; z) ≤ C(δ)

∞∑
j=1

1

2(1−δ)j ‖Hfkρj(z)‖,

f ∈ L2(S, dσ) and z ∈ B. From (1.6) we see immediately that if sup|z|<1 ‖Hfkz‖ <∞, then
f − Pf ∈ BMO. Similarly, it is a trivial exercise to deduce from (1.6) that the condition

lim
|z|↑1
‖Hfkz‖ = 0

implies f − Pf ∈ VMO. In other words, local inequality (1.6) recaptures the main results
in [16], and indeed explains why these results hold true. But for the application that we
will present in this paper, we need (1.5), the stronger version of the local inequality.

Recall that, for each 1 ≤ p <∞, the formula

‖A‖+p = sup
k≥1

s1(A) + s2(A) + · · ·+ sk(A)

1−1/p + 2−1/p + · · ·+ k−1/p

defines a symmetric norm for operators [7,Section III.14], where s1(A), . . . , sk(A), . . . are
the s-numbers of A. On any separable Hilbert space H, the set

C+
p = {A ∈ B(H) : ‖A‖+p <∞}

is a norm ideal [7,Section III.2]. It is well known that C+
p contains the Schatten class Cp

and that C+
p 6= Cp. An interesting property of C+

p is that it is not separable with respect
to the norm ‖.‖+p .

Let us also recall the notion of symmetric gauge functions. Let ĉ be the linear space
of sequences {aj}j∈N, where aj ∈ R and for each sequence aj 6= 0 only for a finite number
of j’s. A symmetric gauge function (also called symmetric norming function) is a map

Φ : ĉ→ [0,∞)
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that has the following properties:
(a) Φ is a norm on ĉ.
(b) Φ({1, 0, . . . , 0, . . . }) = 1.
(c) Φ({aj}j∈N) = Φ({|aπ(j)|}j∈N) for every bijection π : N→ N.

See [7,page 71]. Each symmetric gauge function Φ gives rise to the symmetric norm

‖A‖Φ = sup
k≥1

Φ({s1(A), . . . , sk(A), 0, . . . , 0, . . . })

for operators. On any separable Hilbert space H, the set of operators

CΦ = {A ∈ B(H) : ‖A‖Φ <∞}

is a norm ideal [7,page 68]. This term refers to the following properties of CΦ:
• For any B, C ∈ B(H) and A ∈ CΦ, BAC ∈ CΦ and ‖BAC‖Φ ≤ ‖B‖‖A‖Φ‖C‖.
• If A ∈ CΦ, then A∗ ∈ CΦ and ‖A∗‖Φ = ‖A‖Φ.
• For any A ∈ CΦ, ‖A‖ ≤ ‖A‖Φ, and the equality holds when rank(A) = 1.
• CΦ is complete with respect to ‖.‖Φ.

For an unbounded operator, s-numbers are, of course, not defined. But it will be convenient
to adopt the convention that ‖X‖Φ =∞ for any unbounded operator X.

Given a symmetric gauge Φ, it is a common practice to extend its domain of definition
beyond the space ĉ. Suppose that {bj}j∈N is an arbitrary sequence of real numbers, i.e.,
the set {j ∈ N : bj 6= 0} is not required to be finite. Then we define

(1.7) Φ({bj}j∈N) = sup
k≥1

Φ({b1, . . . , bk, 0, . . . , 0, . . . }).

For our purpose we also need to deal with sequences indexed by sets other than N. If W
is a countable, infinite set, then we define

Φ({bα}α∈W ) = Φ({bπ(j)}j∈N),

where π : N→W is any bijection. The definition of symmetric gauge functions guarantees
that the value of Φ({bα}α∈W ) is independent of the choice of the bijection π. To be
thorough, let us also mention the case of finite sequences. For a finite index set F =
{x1, . . . , x`}, we define

Φ({bx}x∈F ) = Φ({bx1
, . . . , bx` , 0, . . . , 0, . . . }).

In particular, associated with the ideal C+
p is the symmetric gauge function Φ+

p , which
is defined as follows. Let 1 ≤ p <∞. For each {aj}j∈N ∈ ĉ, define

(1.8) Φ+
p ({aj}j∈N) = sup

k≥1

|aπ(1)|+ · · ·+ |aπ(k)|
1−1/p + · · ·+ k−1/p

,
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where π : N → N is any bijection such that |aπ(j)| ≥ |aπ(j+1)| for every j ∈ N, which
exists because aj = 0 for all but a finite number of j’s. Then C+

p = CΦ+
p

. More precisely,

the relation between the norm ‖ · ‖+p and symmetric gauge function Φ+
p is that

‖A‖+p = Φ+
p ({s1(A), . . . , sk(A), . . . }).

Theorem 1.6 in [5] implies that if Φ is a symmetric gauge function and if 0 < ‖Hf‖Φ <∞
for some f ∈ L2(S, dσ), then CΦ ⊃ C+

2n.

Theorem 1.1 enables us to characterize the membership Hf ∈ C+
p , 2n < p <∞. Our

characterization result involves the notion of lattice in B, which is defined in terms of the
Bergman metric, as follows. For each z ∈ B\{0}, we have the Möbius transform

(1.9) ϕz(w) =
1

1− 〈w, z〉

{
z − 〈w, z〉

|z|2
z − (1− |z|2)1/2

(
w − 〈w, z〉

|z|2
z

)}
of the unit ball B. Recall that each ϕz is an involution, i.e., ϕz ◦ ϕz = id [14,Theorem
2.2.2]. Also, we define ϕ0(w) = −w. It is well known that the formula

β(z, w) =
1

2
log

1 + |ϕz(w)|
1− |ϕz(w)|

defines a metric on B. For each z ∈ B and each a > 0, we define the corresponding β-ball

D(z, a) = {w ∈ B : β(z, w) < a}.

Definition 1.2. [18,Definition 1.1] (i) Let a be a positive number. A subset Γ of B is said
to be a-separated if D(z, a) ∩D(w, a) = ∅ for all distinct elements z, w in Γ.
(ii) Let 0 < a < b < ∞. A subset Γ of B is said to be an a, b-lattice if it is a-separated
and has the property ∪z∈ΓD(z, b) = B.

As it was mentioned in [18], the simplest example of such a lattice is the following.
Take any positive number 0 < a <∞, and then take any subset M of B that is maximal
with respect to the property of being a-separated. Then M is an a, 2a-lattice in B.

We can now characterize the membership Hf ∈ C+
p , 2n < p <∞.

Theorem 1.3. Let 2n < p < ∞ be given. Let 0 < a < b < ∞ be positive numbers such
that b ≥ 2a. Then there exist constants 0 < c ≤ C <∞ which depend only on the given p,
a, b and the complex dimension n such that the inequality

cΦ+
p ({Var1/2(f − Pf ; z)}z∈Γ) ≤ ‖Hf‖+p ≤ CΦ+

p ({Var1/2(f − Pf ; z)}z∈Γ)

holds for every f ∈ L2(S, dσ) and every a, b-lattice Γ in B.

The rest of the paper is organized as follows. The proof of Theorem 1.1, which is
based on a collection of estimates of mean oscillation, both old and new, will be presented
in Section 2. Sections 3-5 are taken up by the proof of the lower bound in Theorem 1.3.

5



Specifically, we introduce a standard decomposition of the ball B and modified kernel

function ψz,t. With this decomposition and ψz,t, we define partial sampling operators R
(t)
F .

In Section 3 we prove that for each given t > 0, there is a bound C3.3(t) for the norms of

the operators R
(t)
F . This is the key step in the proof of the lower bound in Theorem 1.3.

Then in Section 4 we use these R
(t)
F to “sample” operators of the form (H∗fHf )p/2. The

result of this “sampling” together with the local inequality provided by Theorem 1.1, plus
some counting arguments that are standard in connection with the decomposition of B,
give us a lower bound for ‖(H∗fHf )p/2‖Φ in Proposition 5.5. In fact, Proposition 5.5 is a
rather general result by itself. To complete the proof of the lower bound in Theorem 1.3,
we need a special property (Lemma 5.7) of the family of symmetric gauge functions Φ+

p ,
1 < p <∞. Because of this special property, the general lower bound given in Proposition
5.5 implies the lower bound in Theorem 1.3.

The proof of the upper bound in Theorem 1.3 takes up Sections 6-8. For the upper
bound, it suffices to work with commutators [P,Mg] rather than Hf . In other words, the
upper bound in Theorem 1.3 can be treated as a “two-sided” problem, which is how one
usually deals with upper bounds for Hankel operators. The two main steps in the proof
of the upper bound in Theorem 1.3 are a “reverse Hölder’s inequality” involving Φ+

p and
an interpolation. These two steps are accomplished in Sections 6 and 7 respectively. The
proof of the upper bound is then completed in Section 8.

2. Various mean oscillations

As one might expect, the proof of Theorem 1.1 is a collection of estimates of mean
oscillations. Fortunately, some of these estimates have been established previously [5,16].
But new estimates will also be needed. We begin with a review of what has already been
established, and then progress to new material.

First of all, we will follow the notation in [5,14,16]. It is well known that the formula

(2.1) d(ζ, ξ) = |1− 〈ζ, ξ〉|1/2, ζ, ξ ∈ S,

defines a metric on S [14,page 66]. Throughout the paper, we denote

B(ζ, r) = {x ∈ S : |1− 〈x, ζ〉|1/2 < r}

for ζ ∈ S and r > 0. There is a constant 2−n < A0 <∞ such that

(2.2) 2−nr2n ≤ σ(B(ζ, r)) ≤ A0r
2n

for all ζ ∈ S and 0 < r ≤
√

2 [14,Proposition 5.1.4]. Note that the upper bound actually
holds when r >

√
2. For f ∈ L2(S, dσ), ζ ∈ S and r > 0, we define

(2.3) SD(f ; ζ, r) =

(
1

σ(B(ζ, r))

∫
B(ζ,r)

|f − fB(ζ,r)|2dσ

)1/2

,
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where

fE =
1

σ(E)

∫
E

fdσ

if E is any Borel set with σ(E) > 0.

Proposition 2.1. [16,Proposition 2.2] There exists a constant 0 < C2.1 < ∞ such that
the inequality

SD(Pf ; ζ, a) ≤ C2.1

∞∑
k=1

1

2k
SD(f ; ζ, 2ka)

holds for all f ∈ L2(S, dσ), ζ ∈ S and a > 0.

Lemma 2.2. [5,Lemma 2.2] There exists a constant 0 < C2.2 < ∞ such that for all
f ∈ L2(S, dσ) and z ∈ B\{0}, we have

‖(f − 〈fkz, kz〉)kz‖ ≤ C2.2

∞∑
k=1

1

2k
SD(f ; ζ, 2ka),

where a = (1− |z|2)1/2 and ζ = z/|z|.

Recall that for z ∈ B\{0}, the Möbius transform ϕz is defined by (1.9). Moreover,

〈g ◦ ϕz, 1〉 = 〈gkz, kz〉

for every g ∈ L2(S, dσ) [14,page 44].

Lemma 2.3. [5,Lemma 2.3] There is a constant C2.3 such that the following estimate
holds: Let 0 < a < 1 and ζ ∈ S, and set z = (1 − a2)1/2ζ. Let f ∈ L2(S, dσ). Then for
each a ≤ b ≤ 4,

SD(f ◦ ϕz; ζ, b) ≤ C2.3

∞∑
k=1

1

2k
SD(f ; ζ, 2k+2(a/b)).

Lemma 2.4. There is a constant C2.4 such that the following estimate holds: Let 0 < a < 1
and ζ ∈ S. Set z = (1− a2)1/2ζ. Then

∞∑
k=N

1

2k
SD((P (f ◦ ϕz)) ◦ ϕz; ζ, 2ka) ≤ C2.4

1

2εN

∞∑
j=1

j

2(1−ε)j SD(f ; ζ, 2ja)

for all f ∈ L2(S, dσ), N ∈ N and 0 < ε ≤ 1/2.

Proof. The more substantive half of the lemma, namely the case where the natural number
N ∈ N satisfies the condition 2Na ≤ 4, was proved as Lemma 2.4 in [5]. Therefore we
only need to consider the other half of the lemma, i.e., the case where 2Na > 4.
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Let f ∈ L2(S, dσ). Since we now assume 2Na > 4, if k ≥ N , then B(ζ, 2ka) = S.
Consequently, with cz = 〈(P (f ◦ ϕz)) ◦ ϕz, 1〉 = 〈kzP (f ◦ ϕz), kz〉, we have

∞∑
k=N

1

2k
SD((P (f ◦ ϕz)) ◦ ϕz; ζ, 2ka) =

2

2N

{∫
|(P (f ◦ ϕz)) ◦ ϕz − cz|2dσ

}1/2

=
2

2N

{∫
|P (f ◦ ϕz)− cz|2|kz|2dσ

}1/2

=
2

2N
Var1/2(P (f ◦ ϕz); z).(2.4)

Now we apply Lemma 2.2 and Proposition 2.1. This gives us

2

2N
Var1/2(P (f ◦ ϕz); z) ≤

2

2N
C2.2

∞∑
k=1

1

2k
SD(P (f ◦ ϕz); ζ, 2ka)

≤ 2C2.2C2.1

2N

∞∑
k=1

1

2k

∞∑
`=1

1

2`
SD(f ◦ ϕz; ζ, 2k+`a) ≤ C1

2N

∞∑
j=1

j

2j
SD(f ◦ ϕz; ζ, 2ja)

≤ C2

2N

J∑
j=1

j

2j
SD(f ◦ ϕz; ζ, 2ja),(2.5)

where J is the smallest natural number satisfying the condition 2Ja ≥ 4 and C2 = C1(1 +∑∞
j=1(j + 1)/2j). Using Lemma 2.2 again, we have

(2.6) SD(f ◦ ϕz; ζ, 2Ja) = Var1/2(f ◦ ϕz; 0) = Var1/2(f ; z) ≤ C2.2

∞∑
k=1

1

2k
SD(f ; ζ, 2ka).

On the other hand, for each 1 ≤ j ≤ J−1, the definition of J ensures 2ja < 4, consequently
Lemma 2.3 can be applied with b = 2ja. Therefore, by Lemma 2.3,

J−1∑
j=1

j

2j
SD(f ◦ ϕz; ζ, 2ja) ≤ C2.3

J−1∑
j=1

j

2j

∞∑
i=1

1

2i
SD
(
f ; ζ, 2i+2 a

2ja

)

= C2.3

J−1∑
j=1

j

2j

∞∑
i=1

1

2i
SD(f ; ζ, 2i−J+2+(J−j)) ≤ C3

J−1∑
j=1

j

2j

∞∑
i=1

1

2i
SD(f ; ζ, 2i+(J−j)a),

where the last ≤ follows from the inequality 2−J+2 ≤ a < 2−J+3 and (2.2). Hence

J−1∑
j=1

j

2j
SD(f ◦ ϕz; ζ, 2ja) ≤ C3

∞∑
m=1

SD(f ; ζ, 2ma)
∑

C(i,j;m)

j

2i+j
,

where C(i, j;m) represents the following three constraints: i+ J − j = m, 1 ≤ j ≤ J − 1,
and i ≥ 1. Note that N ≥ J by the definition of J . Thus for every 0 < ε ≤ 1/2 we have

1

2N

J−1∑
j=1

j

2j
SD(f ◦ ϕz; ζ, 2ja) ≤ C3

2εN

∞∑
m=1

SD(f ; ζ, 2ma)
∑

C(i,j;m)

j

2i+j+(1−ε)J

≤ C3

2εN

∞∑
m=1

1

2(1−ε)m SD(f ; ζ, 2ma)
∑

C(i,j;m)

j

22(1−ε)j .(2.7)
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Obviously, for each m ≥ 1, if i, i′ ∈ N and j, j′ ∈ {1, . . . , J − 1} satisfy the equations
i+J − j = m and i′+J − j′ = m, and if i 6= i′, then j 6= j′. Since we assume 0 < ε ≤ 1/2,
it now follows that ∑

C(i,j;m)

j

22(1−ε)j ≤
∑

C(i,j;m)

j

2j
≤
∞∑
j=1

j

2j
= C4.

Substituting this in (2.7), we find that

1

2N

J−1∑
j=1

j

2j
SD(f ◦ ϕz; ζ, 2ja) ≤ C3C4

2εN

∞∑
m=1

1

2(1−ε)m SD(f ; ζ, 2ma).

Now if we let C5 = C3C4 + C2.2 and if we take (2.6) into account, we see that

1

2N

J∑
j=1

j

2j
SD(f ◦ ϕz; ζ, 2ja) ≤ C5

2εN

∞∑
m=1

1

2(1−ε)m SD(f ; ζ, 2ma).

Recalling (2.4) and (2.5), this completes the proof of the lemma in the case 2Na > 4. �

Lemma 2.5. [5,Lemma 3.4] Let f ∈ L2(S, dσ) and write g = f − Pf . Then for every z ∈
B\{0} we have Hfkz = vzkz, where vz = g − (P (g ◦ ϕz)) ◦ ϕz.

Lemma 2.6. [5,Lemma 5.1] For each k ≥ 0, there is a C2.6(k) which depends only on k
and n such that

SD(vz; z/|z|, 2k(1− |z|2)1/2) ≤ C2.6(k)‖MmzHfkz‖

for all f ∈ L2(S, dσ) and z ∈ B\{0}, where the relation between f and vz is the same as
in Lemma 2.5.

Lemma 2.7. For each N ∈ N, there exists a constant C(N) which depends only on N
and the complex dimension n such that if f ∈ L2(S, dσ) and g = f − Pf , then

SD(g; z/|z|, (1−|z|2)1/2) ≤ C(N)‖MmzHfkz‖+
C2.7

2εN

∞∑
j=1

j

2(1−ε)j SD(g; z/|z|, 2j(1−|z|2)1/2)

for all z ∈ B\{0} and 0 < ε ≤ 1/2, where C2.7 = (1 + C2.1)(1 + C2.4) and C2.1, C2.4 are
the constants provided by Proposition 2.1 and Lemma 2.4 respectively.

Proof. Let f ∈ L2(S, dσ) and write g = f − Pf . Given a z ∈ B\{0}, we set hz =
(P (g ◦ ϕz)) ◦ ϕz and vz = g − (P (g ◦ ϕz)) ◦ ϕz. Since g = vz + hz and Pg = 0, we have
hz = −Pvz. Therefore

SD(g; z/|z|, (1− |z|2)1/2) ≤ SD(vz; z/|z|, (1− |z|2)1/2) + SD(Pvz; z/|z|, (1− |z|2)1/2)

≤ (1 + C2.1)
∞∑
k=0

1

2k
SD(vz; z/|z|, 2k(1− |z|2)1/2),

9



where the second ≤ follows from Proposition 2.1. Thus for each N ∈ N we have

SD(g; z/|z|, (1− |z|2)1/2) ≤ (1 + C2.1)(RN + SN + TN ),

where

RN =
N−1∑
k=0

1

2k
SD(vz; z/|z|, 2k(1− |z|2)1/2),

SN =

∞∑
k=N

1

2k
SD(g; z/|z|, 2k(1− |z|2)1/2),

TN =
∞∑
k=N

1

2k
SD((P (g ◦ ϕz)) ◦ ϕz; z/|z|, 2k(1− |z|2)1/2).

Applying Lemma 2.4 to TN , we see that

SN + TN ≤
1 + C2.4

2εN

∞∑
j=1

j

2(1−ε)j SD(g; z/|z|, 2j(1− |z|2)1/2)

for every 0 < ε ≤ 1/2. By Lemma 2.6, RN ≤ M(N)‖MmzHfkz‖, where M(N) depends
only on N and n. This completes the proof. �

Lemma 2.8. There exists a constant C2.8 which depends only on n such that

SD(f ; z/|z|, 2j(1− |z|2)1/2) ≤ C2.8Var1/2(f ; ρj(z))

for all f ∈ L2(S, dσ), z ∈ B\{0} and j ∈ N, where ρj is defined by (1.2).

Proof. It is easy to see that there is a C1 which depends only on n such that

SD(f ; z/|z|, (1− |z|2)1/2) ≤ C1Var1/2(f ; z)

for all f ∈ L2(S, dσ) and z ∈ B\{0}. Thus in the case where ρj(z) 6= 0, the lemma follows
from the above inequality and (1.3). On the other hand, if ρj(z) = 0, then by (1.2) we
have 2j(1− |z|2)1/2 ≥ 1. Hence, recalling (2.2), in the case ρj(z) = 0 we have

SD(f ; z/|z|, 2j(1− |z|2)1/2) ≤ C2SD(f ; z/|z|, 2) = C2Var1/2(f ; 0) = C2Var1/2(f ; ρj(z)).

This completes the proof. �

Corollary 2.9. For each N ∈ N, there exists a constant C(N) which depends only on N
and n such that if f ∈ L2(S, dσ) and g = f − Pf , then

SD(g; z/|z|, (1− |z|2)1/2) ≤ C(N)‖MmzHfkz‖+
C2.9

2εN

∞∑
j=1

j

2(1−ε)j Var1/2(g; ρj(z))
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for all z ∈ B\{0} and 0 < ε ≤ 1/2, where C2.9 = C2.7C2.8 and C2.7, C2.8 are the constants
provided by Lemmas 2.7 and 2.8 respectively.

Proof. This follows immediately from Lemmas 2.7 and 2.8. �

Lemma 2.10. There is a constant C2.10 which depends only on n such that if r ≥ 1/2,
then the inequality

SD(f ; ζ, r) ≤ C2.10Var1/2(f ; 0)

holds for all f ∈ L2(S, dσ) and ζ ∈ S.

The proof of Lemma 2.10 is trivial and will be omitted.

Lemma 2.11. Let γ > 0 and 0 < ε ≤ 1/4. There exists a constant C2.11(γ, ε) which
depends only on γ, ε and n such that if f ∈ L2(S, dσ) and g = f − Pf , then

(2.8) Var1/2(g; z) ≤ C2.11(γ, ε)
∞∑
k=1

1

2k
‖Mmρk(z)

Hfkρk(z)‖+ γ
∞∑
`=1

1

2(1−2ε)`
Var1/2(g; ρ`(z)),

for every z ∈ B, where ρ` is the radial contraction defined by (1.2).

Proof. Let f ∈ L2(S, dσ) be given and write g = f − Pf . Let z ∈ B also be given.

(1) First we consider the case where 4(1 − |z|2) < 1. For such a z ∈ B, let K(z) be
the smallest natural number such that 4K(z)+1(1− |z|2) ≥ 1. Then, of course,

(2.9) 4K(z)(1− |z|2) < 1.

Applying first Lemma 2.2 and then Lemma 2.10, we have

Var1/2(g; z) ≤ C2.2

∞∑
k=1

1

2k
SD(g; z/|z|, 2k(1− |z|2)1/2)

= C2.2

K(z)∑
k=1

1

2k
SD(g; z/|z|, 2k(1− |z|2)1/2)

+ C2.2

∞∑
k=K(z)+1

1

2k
SD(g; z/|z|, 2k(1− |z|2)1/2)

≤ C2.2

K(z)∑
k=1

1

2k
SD(g; z/|z|, 2k(1− |z|2)1/2) + C2.2

∞∑
k=K(z)+1

C2.10

2k
Var1/2(g; 0)

= C2.2A+ C2.2C2.10B,(2.10)

where

A =

K(z)∑
k=1

1

2k
SD(g; z/|z|, 2k(1− |z|2)1/2) and B =

1

2K(z)
Var1/2(g; 0).
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We estimate A and B separately.

For A, note that (2.9) ensures that 4k(1− |z|2) < 1 for every 1 ≤ k ≤ K(z). Thus, by
(1.2), we have

A =

K(z)∑
k=1

1

2k
SD(g; ρk(z)/|ρk(z)|, (1− |ρk(z)|2)1/2).

Applying Corollary 2.9 to each term on the right-hand side, for N ∈ N and 0 < ε ≤ 1/4
we have

A ≤ C(N)
∞∑
k=1

1

2k
‖Mmρk(z)

Hfkρk(z)‖+
C2.9

2εN

∞∑
k=1

1

2k

∞∑
j=1

j

2(1−ε)j Var1/2(g; ρj(ρk(z))).

From (1.3) we see that ρj(ρk(z)) = ρj+k(z). Therefore

A ≤ C(N)
∞∑
k=1

1

2k
‖Mmρk(z)

Hfkρk(z)‖+
C2.9

2εN

∞∑
`=2

Var1/2(g; ρ`(z))
∑
j+k=`

1

2k
· j

2(1−ε)j

≤ C(N)
∞∑
k=1

1

2k
‖Mmρk(z)

Hfkρk(z)‖+
C2(ε)

2εN

∞∑
`=1

1

2(1−2ε)`
Var1/2(g; ρ`(z)),

where C2(ε) = C2.9 sup`≥1 2−ε``2. Let γ > 0 also be given. Then we set N to be the

smallest natural number such that C2(ε)/2εN ≤ γ/C2.2. This determines N in terms of
γ, ε and allows us to write C(N) = C1(γ, ε). Hence the above becomes

(2.11) A ≤ C1(γ, ε)
∞∑
k=1

1

2k
‖Mmρk(z)

Hfkρk(z)‖+
γ

C2.2

∞∑
`=1

1

2(1−2ε)`
Var1/2(g; ρ`(z)).

For B, notice that since g = f − Pf , we have

Var1/2(g; 0) = ‖g‖ = ‖Hf1‖ = ‖Hfk0‖ = ‖MmρK(z)+1(z)
HfkρK(z)+1(z)‖,

where the last = is due to the fact ρK(z)+1(z) = 0, which follows from (1.2) and the

inequality 4K(z)+1(1− |z|2) ≥ 1. Thus

(2.12) B =
1

2K(z)
Var1/2(g; 0) =

2

2K(z)+1
‖MmρK(z)+1(z)

HfkρK(z)+1(z)‖.

Now if we combine (2.10) with (2.11) and (2.12), we see that (2.8) holds for the constant
C2.11(γ, ε) = C2.2C1(γ, ε) + 2C2.2C2.10 in the case 4(1− |z|2) < 1.

(2) Suppose that 4(1− |z|2) ≥ 1. Then |z|2 ≤ 3/4, and consequently ‖kzg‖ ≤ C3‖g‖.
Also, the condition 4(1− |z|2) ≥ 1 implies ρ1(z) = 0. Therefore in this case we have

Var1/2(g; z) ≤ ‖gkz‖ ≤ C3‖g‖ = C3‖Hf1‖ = C3‖Hfk0‖ = C3‖Mmρ1(z)
Hfkρ1(z)‖.
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This proves (2.8) in the case 4(1− |z|2) ≥ 1. �

Proof of Theorem 1.1. Let 0 < δ ≤ 1/2 be given and set ε = δ/3. Write A(ε) =
∑∞
m=1 2−εm.

Let γ > 0 be such that γA(ε) ≤ 1. Let f ∈ L2(S, dσ) and denote

g = f − Pf.

In addition to the ρj defined by (1.2) in the case j ∈ N, we also define ρ0(z) = z for every
z ∈ B. Obviously, we still have ρk ◦ ρj = ρk+j for all k, j ≥ 0. Let z ∈ B be given. Then
we can apply Lemma 2.11 to every Var1/2(g; ρj(z)), j ≥ 0. This gives us

∞∑
j=0

1

2(1−3ε)j
Var1/2(g; ρj(z)) ≤ C2.11(γ, ε)

∞∑
j=0

1

2(1−3ε)j

∞∑
k=1

1

2k
‖Mmρk(ρj(z))

Hfkρk(ρj(z))‖

+ γ

∞∑
j=0

1

2(1−3ε)j

∞∑
`=1

1

2(1−2ε)`
Var1/2(g; ρ`(ρj(z)))

= C2.11(γ, ε)

∞∑
ν=1

‖Mmρν (z)
Hfkρν(z)‖

∑
j+k=ν

1

2(1−3ε)j2k

+ γ
∞∑
ν=1

Var1/2(g; ρν(z))
∑
j+`=ν

1

2(1−3ε)j2(1−2ε)`

≤ C2.11(γ, ε)A(ε)

∞∑
ν=1

1

2(1−3ε)ν
‖Mmρν (z)

Hfkρν(z)‖

+ γA(ε)
∞∑
ν=1

1

2(1−3ε)ν
Var1/2(g; ρν(z)).(2.13)

Since Var1/2(g; ρν(z)) ≤ ‖gkρν(z)‖ ≤ ‖kρν(z)‖∞‖g‖ and |ρν(z)| ≤ |z|, it follows that

∞∑
ν=1

1

2(1−3ε)ν
Var1/2(g; ρν(z)) <∞.

Since γA(ε) ≤ 1, we can cancel out
∑∞
ν=1 2−(1−3ε)νVar1/2(g; ρν(z)) from both sides of

(2.13) to obtain

Var1/2(g; z) = Var1/2(g; ρ0(z)) ≤ C2.11(γ, ε)A(ε)
∞∑
ν=1

1

2(1−3ε)ν
‖Mmρν (z)

Hfkρν(z)‖.

Since 3ε = δ, this completes the proof of Theorem 1.1. �

3. Partial sampling
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Our next goal is to prove Theorem 1.3. For this we need the modified kernel function
ψz,t introduced in [5], whose definition we now recall. For each pair of 0 < t <∞ and z ∈
B, we define

(3.1) ψz,t(ζ) =
(1− |z|2)(n/2)+t

(1− 〈ζ, z〉)n+t
,

|ζ| ≤ 1. In terms of the Schur multiplier mz defined by (1.4) and the normalized repro-
ducing kernel kz, we have the relation

ψz,t = (1 + |z|)tmt
zkz.

We think of ψz,t as a modified version of kz. This modification improves the “decaying
rate” of the kernel, as is shown in the next proposition.

Proposition 3.1. Given any positive number 0 < t <∞, there is a constant C3.1(t) that
depends only on t and n such that the inequality

|〈ψz,t, ψw,t〉| ≤ C3.1(t)

(
(1− |z|2)1/2(1− |w|2)1/2

|1− 〈w, z〉|

)n+t

holds for all z, w ∈ B.

Proof. Let 0 < t <∞. By [14,Proposition 1.4.10], there is a constant C(t) such that

(3.2)

∫
dσ(ζ)

|1− 〈ζ, γ〉|n+t
≤ C(t)

(1− |γ|2)t

for every γ ∈ B. Let z, w ∈ B be given. The key idea is to express 〈w, z〉 in the form

(3.3) 〈w, z〉 = v2

for some v ∈ C with |v| < 1. On the open unit disc {u ∈ C : |u| < 1}, we have the power
series expansion

1

(1− u)n+t
=

∞∑
j=0

bju
j .

If j 6= k, then 〈ζ, z〉j and 〈ζ, w〉k are orthogonal to each other in L2(S, dσ). Therefore∫
dσ(ζ)

(1− 〈ζ, z〉)n+t(1− 〈w, ζ〉)n+t
=
∞∑
j=0

b2j

∫
〈ζ, z〉j〈w, ζ〉jdσ(ζ).

By an obvious change of variables or by a direct calculation using [14,Proposition 1.4.9],∫
〈ζ, z〉j〈w, ζ〉jdσ(ζ) = 〈w, z〉j

∫
|ζ1|2jdσ(ζ),
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where ζ1 denotes the first component of ζ. Using (3.3), we now have∫
dσ(ζ)

(1− 〈ζ, z〉)n+t(1− 〈w, ζ〉)n+t
=

∞∑
j=0

b2j

∫
(vζ1)j(vζ̄1)jdσ(ζ)

=

∫
dσ(ζ)

(1− vζ1)n+t(1− vζ̄1)n+t
,

consequently

(3.4)

∣∣∣∣∫ dσ(ζ)

(1− 〈ζ, z〉)n+t(1− 〈w, ζ〉)n+t

∣∣∣∣ ≤ ∫ dσ(ζ)

|1− vζ1|n+t|1− vζ̄1|n+t
.

It is elementary that if c is a complex number with |c| ≤ 1 and if 0 ≤ r ≤ 1, then

2|1− rc| ≥ |1− c|.

By (3.3) and this inequality, we have

|1− 〈w, z〉| = |1− v2| ≤ 2|1− vζ1 · vζ̄1| ≤ 2|1− vζ1|+ 2|1− vζ̄1|.

Thus if we set

A = {ζ ∈ S : |1− vζ1| ≥ (1/4)|1− 〈w, z〉|} and

B = {ζ ∈ S : |1− vζ̄1| ≥ (1/4)|1− 〈w, z〉|},

then A ∪B = S. Hence it follows from (3.4) that∣∣∣∣∫ dσ(ζ)

(1− 〈ζ, z〉)n+t(1− 〈w, ζ〉)n+t

∣∣∣∣
≤ 4n+t

|1− 〈w, z〉|n+t

(∫
A

dσ(ζ)

|1− vζ̄1|n+t
+

∫
B

dσ(ζ)

|1− vζ1|n+t

)
.

Applying (3.2) to the vectors (v, 0, . . . , 0) and (v̄, 0, . . . , 0) in B, we have∫
dσ(ζ)

|1− vζ̄1|n+t
≤ C(t)

(1− |v|2)t
and

∫
dσ(ζ)

|1− vζ1|n+t
≤ C(t)

(1− |v|2)t
.

But |v|2 = |〈w, z〉| ≤ |w||z|. Therefore 1−|v|2 ≥ (1/2)(1−|z|2) and 1−|v|2 ≥ (1/2)(1−|w|2).
Combining the above, we find that∣∣∣∣∫ dσ(ζ)

(1− 〈ζ, z〉)n+t(1− 〈w, ζ〉)n+t

∣∣∣∣ ≤ 4n+t2t+1C(t)

|1− 〈w, z〉|n+t(1− |z|2)t/2(1− |w|2)t/2
.

Recalling the definition (3.1) of ψz,t and ψw,t, the proof is complete. �
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In [5], the modified kernel functions ψz,t were used to construct a certain “quasi-
resolution” of the identity operator. In this paper, ψz,t will be used differently; we will
use these functions to construct certain “partial sampling” operators. We will see that the
estimate provided by Proposition 3.1 leads to a uniform bound for these partial sampling
operators, which is a crucial step in the proof of the lower bound in Theorem 1.3. But first
we need to define these operators, which involves a decomposition of the unit ball.

For each integer k ≥ 0, let {uk,1, . . . , uk,m(k)} be a subset of S which is maximal with
respect to the property

(3.5) B(uk,j , 2
−k−1) ∩B(uk,j′ , 2

−k−1) = ∅ for all 1 ≤ j < j′ ≤ m(k).

The maximality of {uk,1, . . . , uk,m(k)} implies that

(3.6) ∪m(k)
j=1 B(uk,j , 2

−k) = S.

For each pair of k ≥ 0 and 1 ≤ j ≤ m(k), define

(3.7) Tk,j = {ru : 1− 2−2k ≤ r2 < 1− 2−2(k+1), u ∈ B(uk,j , 2
−k)}.

We also define the index set

I = {(k, j) : k ≥ 0, 1 ≤ j ≤ m(k)}.

Definition 3.2. (a) A partial sampling set is a finite subset F of the open unit ball B
with the property that card(F ∩ Tk,j) ≤ 1 for every (k, j) ∈ I.
(b) For any partial sampling set F and any t > 0, denote

R
(t)
F =

∑
z∈F

ψz,t ⊗ ψz,t.

Proposition 3.3. For each t > 0, there is a constant C3.3(t) such that ‖R(t)
F ‖ ≤ C3.3(t)

for every partial sampling set F .

To prove this proposition, we need to recall the following counting lemma:

Lemma 3.4. [17,Lemma 4.1] Let X be a set and let E be a subset of X×X. Suppose that
m is a natural number such that

card{y ∈ X : (x, y) ∈ E} ≤ m and card{y ∈ X : (y, x) ∈ E} ≤ m

for every x ∈ X. Then there exist pairwise disjoint subsets E1, E2, ..., E2m of E such that

E = E1 ∪ E2 ∪ · · · ∪ E2m

and such that for each 1 ≤ j ≤ 2m, the conditions (x, y), (x′, y′) ∈ Ej and (x, y) 6= (x′, y′)
imply both x 6= x′ and y 6= y′.
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Proof of Proposition 3.3. Let t > 0 and partial sampling set F be given. Then pick an

arbitrary orthonormal set {ez : z ∈ F} indexed by F . We factor R
(t)
F in the form

R
(t)
F = B∗B, where B =

∑
z∈F

ez ⊗ ψz,t.

Since ‖B∗B‖ = ‖BB∗‖, it suffices to estimate the latter. Obviously,

BB∗ =
∑
z,w∈F

〈ψw,t, ψz,t〉ez ⊗ ew.

For each k ≥ 0, define

(3.8) Fk = F ∩ (∪m(k)
j=1 Tk,j) = {z ∈ F : 1− 2−2k ≤ |z|2 < 1− 2−2(k+1)}.

Then it is easy to see that

(3.9) BB∗ = A0 +
∞∑
`=1

(A` +A∗` ),

where

A` =
∞∑
k=0

∑
w∈Fk

∑
z∈Fk+`

〈ψw,t, ψz,t〉ez ⊗ ew

for every ` ≥ 0. From (3.8) we see that for each ` ≥ 0, if k 6= k′, then we have both
{ew : w ∈ Fk} ∩ {ew : w ∈ Fk′} = ∅ and {ez : z ∈ Fk+`} ∩ {ez : z ∈ Fk′+`} = ∅. Since
{ez : z ∈ F} is an orthonormal set, it follows that

(3.10) ‖A`‖ = sup
k≥0
‖A`,k‖

for every ` ≥ 0 , where

A`,k =
∑
w∈Fk

∑
z∈Fk+`

〈ψw,t, ψz,t〉ez ⊗ ew,

k ≥ 0. Obviously, our task is to estimate ‖A`,k‖. To do this, it is crucial that we group
and re-enumerate the terms in the above sum properly.

Fix a pair of k ≥ 0 and ` ≥ 0 for the moment. First of all, (3.6) tells us that for each
γ ∈ {1, . . . ,m(k + `)}, we have uk+`,γ ∈ B(uk,i(γ), 2

−k) for some i(γ) ∈ {1, . . . ,m(k)}.
Hence there is a partition

{1, . . . ,m(k + `)} = I1 ∪ · · · ∪ Im(k)

such that Ii ∩ Ii′ = ∅ if i 6= i′ and such that for every i ∈ {1, . . . ,m(k)}, we have

(3.11) uk+`,γ ∈ B(uk,i, 2
−k) whenever γ ∈ Ii.
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By (3.5) and (2.2), this implies

(3.12) card(Ii) ≤ C122n`

for every i, where the constant C1 depends only on the complex dimension n. By (3.8),
corresponding to the above is a partition

Fk+` = G1 ∪ · · · ∪Gm(k)

such that Gi ∩Gi′ = ∅ if i 6= i′ and such that for every i ∈ {1, . . . ,m(k)}, we have

(3.13) Gi ⊂ ∪γ∈IiTk+`,γ .

From Definition 3.2(a) and (3.8), we see that there is a subset J of {1, . . . ,m(k)} such that

Fk = {wj : j ∈ J},

where wj 6= wj′ if j 6= j′, and such that wj ∈ Tk,j for every j ∈ J . Now, for each pair of
j ∈ J and i ∈ {1, . . . ,m(k)}, we define

(3.14) ϕj,i =
∑
z∈Gi

〈ψwj ,t, ψz,t〉ez,

keeping in mind the usual convention that summing over the empty set results in 0. Since
Gi ∩Gi′ = ∅ whenever i 6= i′ and since {ez : z ∈ F} is an orthonormal set, we have

(3.15) 〈ϕj,i, ϕj′,i′〉 = 0 whenever i 6= i′,

regardless of what j and j′ may be.

By the preceding paragraph, we can rewrite A`,k as

A`,k =
∑
j∈J

m(k)∑
i=1

ϕj,i ⊗ ewj .

We need to further decompose A`,k according to the relation between j and i. Define

E1 = {(j, i) : j ∈ J, 1 ≤ i ≤ m(k), d(uk,j , uk,i) ≤ 2−k+2} and

Eq = {(j, i) : j ∈ J, 1 ≤ i ≤ m(k), 2−k+q < d(uk,j , uk,i) ≤ 2−k+q+1} for q ≥ 2.

Then

(3.16) A`,k =

∞∑
q=1

Yq, where Yq =
∑

(j,i)∈Eq

ϕj,i ⊗ ewj .
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By (3.5) and (2.2), there is a C2 that depends only on the complex dimension n such that

card{i : 1 ≤ i ≤ m(k), d(uk,j , uk,i) ≤ 2−k+q+1} ≤ C222nq

for every q ∈ N and every j ∈ {1, . . . ,m(k)}. Now we apply Lemma 3.4 to each Eq. By
that lemma, for each q ∈ N we have a partition

(3.17) Eq = Eq,1 ∪ · · · ∪ Eq,2α(q),

where α(q) ≤ C222nq, such that for every 1 ≤ ν ≤ 2α(q), the conditions (j, i), (j′, i′) ∈ Eq,ν
and (j, i) 6= (j′, i′) imply both j 6= j′ and i 6= i′.

According to (3.17), we can further decompose each Yq in the form

(3.18) Yq =

2α(q)∑
ν=1

Yq,ν , where Yq,ν =
∑

(j,i)∈Eq,ν

ϕj,i ⊗ ewj .

The property of Eq,ν ensures that both projections (j, i) 7→ j and (j, i) 7→ i are injective
on Eq,ν . Thus by (3.15) and the orthogonality 〈ewj , ewj′ 〉 = 0 for j 6= j′, we have

(3.19) ‖Yq,ν‖ = sup
(j,i)∈Eq,ν

‖ϕj,i‖

for every pair of q ∈ N and 1 ≤ ν ≤ 2α(q).

Obviously, our next task is to estimate ‖ϕj,i‖. Since {ez : z ∈ F} is an orthonormal
set, it follows from (3.14) that

‖ϕj,i‖ ≤ {card(Gi)}1/2 sup
z∈Gi

|〈ψwj ,t, ψz,t〉|.

By Definition 3.2(a) and (3.13), we have card(Gi) ≤ card(Ii). Recalling (3.12), this means

‖ϕj,i‖ ≤ C1/2
1 2n` sup

z∈Gi
|〈ψwj ,t, ψz,t〉|.

Applying Proposition 3.1, we further obtain

(3.20) ‖ϕj,i‖ ≤ C1/2
1 C3.1(t)2n` sup

z∈Gi

(
(1− |z|2)1/2(1− |wj |2)1/2

|1− 〈z, wj〉|

)n+t

.

The key observation at this point is to factor the fraction inside the (· · · )n+t in the form

(1− |z|2)1/2(1− |wj |2)1/2

|1− 〈z, wj〉|
=

{
1− |z|2

1− |wj |2

}1/2

· 1− |wj |2

|1− 〈z, wj〉|
.
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As we will see momentarily, the two factors on the right-hand side provide decay in the
radial direction and the spherical direction respectively. Obviously, the decaying rates in
these two directions are different. Much of the complicated decomposition above is dictated
by this disparity between the two directions.

Since Gi ⊂ Fk+`, it follows from (3.7) that 1 − |z|2 ≤ 2−2(k+`) for every z ∈ Gi. On
the other hand, (3.7) tells us that 1−|wj |2 > 2−2k−2 for every j ∈ J . Thus {(1−|z|2)/(1−
|wj |2)}1/2 ≤ 2−`+1 if z ∈ Gi, i ∈ {1, . . . ,m(k)}, and j ∈ J . Bringing this into (3.20), after
the obvious simplification we find that

(3.21) ‖ϕj,i‖ ≤ 2n+tC
1/2
1 C3.1(t)2−t` sup

z∈Gi

(
1− |wj |2

|1− 〈z, wj〉|

)n+t

.

Since |〈z, wj〉| ≤ |wj |, this immediately gives us the simple estimate

‖ϕj,i‖ ≤ C3(t)2−t` in the case (j, i) ∈ E1,ν ,

where C3(t) = 4n+tC
1/2
1 C3.1(t). By (3.19), we have ‖Y1,ν‖ ≤ C3(t)2−t` for every 1 ≤ ν ≤

2α(1). Since α(1) ≤ 22nC2, by (3.18) we have

(3.22) ‖Y1‖ ≤ 22n+1C2C3(t)2−t`.

But to estimate ‖Yq,ν‖ in the case q ≥ 2, we must analyze (1− |wj |2)/|1− 〈z, wj〉|.

Consider a (j, i) in some Eq,ν with q ≥ 2, and suppose that z ∈ Gi. Then by
(3.13) there is a γ ∈ Ii such that z ∈ Tk+`,γ . By (3.7), this means z = |z|ζ for some
ζ ∈ B(uk+`,γ , 2

−(k+`)). On the other hand, we have wj ∈ Tk,j by the definition of wj .
Therefore, by (3.7), there is a ξ ∈ B(uk,j , 2

−k) such that wj = |wj |ξ. Thus

2|1− 〈z, wj〉| ≥ |1− 〈ζ, ξ〉| = d2(ζ, ξ).

Since γ ∈ Ii, we have uk+`,γ ∈ B(uk,i, 2
−k) by (3.11). Since (j, i) ∈ Eq,ν , q ≥ 2, we have

2−k+q < d(uk,j , uk,i) ≤ d(uk,j , ξ) + d(ξ, ζ) + d(ζ, uk+`,γ) + d(uk+`,γ , uk,i)

≤ 2−k + d(ξ, ζ) + 2−(k+`) + 2−k

≤ d(ξ, ζ) + (3/4)2−k+q.

Cancelling out (3/4)2−k+q from both sides, we find that d(ζ, ξ) ≥ (1/4)2−k+q. Hence

|1− 〈z, wj〉| ≥ (1/32)2−2k+2q = 2−2k+2q−5.

By (3.7), the membership wj ∈ Tk,j also means 1− |wj |2 ≤ 2−2k. Thus we conclude that

(3.23)
1− |wj |2

|1− 〈z, wj〉|
≤ 2−2q+5
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if z ∈ Gi, (j, i) ∈ Eq,ν , and q ≥ 2.

Substituting (3.23) in (3.21), we find that

‖ϕj,i‖ ≤ C4(t)2−t`2−2(n+t)q if (j, i) ∈ Eq,ν , q ≥ 2,

where C4(t) = 26(n+t)C
1/2
1 C3.1(t). Recalling (3.19), we obtain

‖Yq,ν‖ ≤ C4(t)2−t`2−2(n+t)q for all q ≥ 2 and 1 ≤ ν ≤ 2α(q).

Since α(q) ≤ C222nq, this and (3.18) together give us

‖Yq‖ ≤ C4(t)2−t`2−2(n+t)q · 2C222nq = C5(t)2−t`2−2tq

for q ≥ 2, where C5(t) = 2C2C4(t). Now set C6(t) = max{C5(t), 22n+1+2tC2C3(t)}.
Combining the above inequality with (3.22) and (3.16), we conclude that

‖A`,k‖ ≤
∞∑
q=1

‖Yq‖ ≤ C6(t)
∞∑
q=1

2−t`2−2tq = C7(t)2−t`,

where C7(t) = C6(t)
∑∞
q=1 2−2tq. By (3.10), this means

‖A`‖ ≤ C7(t)2−t`

for every ` ≥ 0. Finally, returning to (3.9), we reach the conclusion that

‖BB∗‖ ≤ ‖A0‖+ 2
∞∑
`=1

‖A`‖ ≤ 2C7(t)
∞∑
`=0

2−t` = C3.3(t).

Since ‖BB∗‖ = ‖B∗B‖ and B∗B = R
(t)
F , this completes the proof of the proposition. �

4. Symmetric norm

The significance of Proposition 3.3 is that it brings the symmetric norm ‖(H∗fHf )p/2‖Φ
into our estimates:

Lemma 4.1. Let 0 < t <∞ and 2 ≤ p <∞. If f ∈ L2(S, dσ) and if Hf is bounded, then
the inequality

Φ({‖Hfψz,t‖p}z∈F ) ≤ 2t(p−2)C3.3(t)‖(H∗fHf )p/2‖Φ
holds for every symmetric gauge function Φ and every partial sampling set F , where C3.3(t)
is the constant provided by Proposition 3.3.

Proof. Let Φ be a symmetric gauge function. Then it has the following property: For
non-negative numbers a1 ≥ · · · ≥ aν ≥ 0 and b1 ≥ · · · ≥ bν ≥ 0 in descending order, if

a1 + · · ·+ aj ≤ b1 + · · ·+ bj for every 1 ≤ j ≤ ν,
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then
Φ({a1, . . . , aν , 0, . . . , 0, . . . }) ≤ Φ({b1, . . . , bν , 0, . . . , 0, . . . }).

See Lemma III.3.1 in [7]. We will use this property to prove the lemma.

Let t, p, f and F be given as in the statement of the lemma. Suppose that card(F ) =
m. Then we can enumerate the elements in F as z1, . . . , zm in such a way that

‖Hfψz1,t‖ ≥ ‖Hfψz2,t‖ ≥ · · · ≥ ‖Hfψzm,t‖.

For each 1 ≤ k ≤ m, let Fk = {z1, . . . , zk}. Being a subset of F , each Fk is, of course, a

partial sampling set. Hence it follows from Proposition 3.3 that ‖R(t)
Fk
‖ ≤ C3.3(t). In terms

of s-numbers, this implies that

sj((H
∗
fHf )p/2R

(t)
Fk

) ≤ C3.3(t)sj((H
∗
fHf )p/2)

for every j ≥ 1 (see page 61 in [7]). By Definition 3.2(b), rank(R
(t)
Fk

) ≤ k. Writing ‖ · ‖1
for the norm of the trace class, we have

tr((H∗fHf )p/2R
(t)
Fk

) ≤ ‖(H∗fHf )p/2R
(t)
Fk
‖1

= s1((H∗fHf )p/2R
(t)
Fk

) + · · ·+ sk((H∗fHf )p/2R
(t)
Fk

)

≤ C3.3(t){s1((H∗fHf )p/2) + · · ·+ sk((H∗fHf )p/2)}.(4.1)

On the other hand,

(4.2) tr((H∗fHf )p/2R
(t)
Fk

) = 〈(H∗fHf )p/2ψz1,t, ψz1,t〉+ · · ·+ 〈(H∗fHf )p/2ψzk,t, ψzk,t〉.

Since p/2 ≥ 1, it follows from the spectral decomposition of (H∗fHf )p/2 and Hölder’s
inequality that

‖Hfψzj ,t‖p = 〈H∗fHfψzj ,t, ψzj ,t〉p/2 ≤ 〈(H∗fHf )p/2ψzj ,t, ψzj ,t〉‖ψzj ,t‖p−2

≤ 2t(p−2)〈(H∗fHf )p/2ψzj ,t, ψzj ,t〉.

Combining this with (4.2) and (4.1), we obtain the inequality

‖Hfψz1,t‖p + · · ·+ ‖Hfψzk,t‖p ≤ 2t(p−2)C3.3(t){s1((H∗fHf )p/2) + · · ·+ sk((H∗fHf )p/2)}

for every 1 ≤ k ≤ m. By the first paragraph of the proof, this implies

Φ({‖Hfψz,t‖p}z∈F ) ≤ 2t(p−2)C3.3(t)Φ({sj((H∗fHf )p/2)}j∈N)

= 2t(p−2)C3.3(t)‖(H∗fHf )p/2‖Φ.

This completes the proof of the lemma. �
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Having applied Proposition 3.3, our next step is to apply the local inequality (Theorem
1.1) in the proof of the lower bound in Theorem 1.3. But this requires some preparation
because of the involvement of ρ` and the possible overlap between Tk,j and Tk,j′ .

Definition 4.2. Let N ∈ N. An N -partial sampling map is a map ϕ from a finite set X
into B that has the property card{x ∈ X : ϕ(x) ∈ Tk,j} ≤ N for every (k, j) ∈ I.

Recall that for each ` ∈ N, the radial contraction ρ` is defined by (1.2). In addition,
as we did in the proof of Theorem 1.1, we define ρ0(z) = z, z ∈ B.

Lemma 4.3. There exists a natural number M4.3 determined by the complex dimension n
such that the following holds true: Let I ′ be a finite subset of I and let z : I ′ → B be a map
such that z(k, j) ∈ Tk,j for every (k, j) ∈ I ′. Then for each ` ∈ Z+ the map ρ` ◦ z : I ′ →
B is M4.322n`-partial sampling.

Proof. By (3.5) and (2.2), there is a natural number M1 such that

(4.3) card{i : B(uk+`,i, 2
−k−`) ∩B(uk,j , 2

−k) 6= ∅, 1 ≤ i ≤ m(k + `)} ≤M122n`

for all ` ∈ Z+ and (k, j) ∈ I. Also by (3.5) and (2.2), there is a natural number M2 such
that m(k) ≤M222nk for every k ≥ 0. Consequently

(4.4) m(0) +m(1) + · · ·+m(`) ≤ 2M222n`

for every ` ≥ 0. Suppose that z : I ′ → B is a map such that z(k, j) ∈ Tk,j for every
(k, j) ∈ I ′ and suppose that ` ∈ Z+. Let us estimate card{(k′, i) ∈ I ′ : ρ`(z(k

′, i)) ∈ Tk,j}
for each (k, j) ∈ I.

(1) First we consider the case k ≥ 1. Then 0 /∈ Tk,j . By (1.3) and (3.7), if ρ`(z(k
′, i)) ∈

Tk,j , then

1− |z(k′, i)|2 = 2−2`(1− |ρ`(z(k′, i))|2) ∈ (2−2(k+`+1), 2−2(k+`)].

Since it is assumed that z(κ, ν) ∈ Tκ,ν for every (κ, ν) ∈ I ′, the above implies k′ = k + `.
Therefore

card{(k′, i) ∈ I ′ : ρ`(z(k
′, i)) ∈ Tk,j} = card{i : (k + `, i) ∈ I ′, ρ`(z(k + `, i)) ∈ Tk,j}.

Since the membership ρ`(z(k + `, i)) ∈ Tk,j implies ρ`(z(k + `, i))/|ρ`(z(k + `, i))| ∈
B(uk,j , 2

−k) and since z(k + `, i)/|z(k + `, i)| = ρ`(z(k + `, i))/|ρ`(z(k + `, i))|, we have

card{i : (k + `, i) ∈ I ′, ρ`(z(k + `, i)) ∈ Tk,j} ≤
card{i : B(uk+`,i, 2

−k−`) ∩B(uk,j , 2
−k) 6= ∅, 1 ≤ i ≤ m(k + `)}.

Recalling (4.3), we now have

(4.5) card{(k′, i) ∈ I ′ : ρ`(z(k
′, i)) ∈ Tk,j} ≤M122n`
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in the case k ≥ 1.

(2) Consider the case k = 0. That is, we need to estimate card{(k′, i) ∈ I ′ : ρ`(z(k
′, i))

∈ T0,j}, j ∈ {1, . . . ,m(0)}. First of all, by (1.2) and by the argument in (1), we have

card{(k′, i) ∈ I ′ : ρ`(z(k
′, i)) ∈ T0,j , ρ`(z(k

′, i)) 6= 0} ≤M122n`

for every j ∈ {1, . . . ,m(0)}. Thus it remains to estimate card{(k′, i) ∈ I ′ : ρ`(z(k
′, i)) = 0}.

By (1.2), if |w|2 > 1−2−2`, then ρ`(w) 6= 0. Hence if (k′, i) ∈ I ′ is such that ρ`(z(k
′, i)) = 0,

then |z(k′, i)|2 ≤ 1−2−2` < 1−2−2(`+1). Combining this with the assumption z(κ, ν) ∈ Tκ,ν
for every (κ, ν) ∈ I ′ and with (3.7), we conclude that the condition ρ`(z(k

′, i)) = 0 implies
k′ ≤ `. Thus by (4.4) we have

card{(k′, i) ∈ I ′ : ρ`(z(k
′, i)) = 0} ≤ m(0) +m(1) + · · ·+m(`) ≤ 2M222n`.

Therefore

(4.6) card{(k′, i) ∈ I ′ : ρ`(z(k
′, i)) ∈ T0,j} ≤ (M1 + 2M2)22n`

for every j ∈ {1, . . . ,m(0)}.

Finally, from (4.5) and (4.6) we see that if we set M4.3 = M1 + 2M2, then the map
ρ` ◦ z : I ′ → B is M4.322n`-partial sampling. �

Lemma 4.4. There exists a natural number M4.4 determined by the complex dimension n
such that the following holds true: Suppose that N ∈ N and that ϕ : X → B an N -partial
sampling map as defined in Definition 4.2. Then there is a partition

X = X1 ∪ · · · ∪XM4.4N

such that for every i ∈ {1, . . . ,M4.4N}, the map ϕ : Xi → B is 1-partial sampling.

Proof. We use a standard maximality argument, as follows. By (3.5), (3.7) and (2.2), there
is a natural number M4.4 such that the inequality

card{ν : Tk,ν ∩ Tk,j 6= ∅, 1 ≤ ν ≤ m(k)} ≤M4.4

holds for every (k, j) ∈ I. Moreover, if k 6= k′, then Tk,j∩Tk′,j′ = ∅ for all possible j and j′.
Suppose that ϕ : X → B is an N -partial sampling map. Then we define X1 to be a subset
of X that is maximal with respect to the property that the restricted map ϕ : X1 → B is
1-partial sampling. Suppose that m ≥ 1 and that we have defined X1, . . . , Xm. Then we
define Xm+1 to be a subset of X\{∪mi=1Xi} that is maximal with respect to the property
that the restricted map ϕ : Xm+1 → B is 1-partial sampling. Inductively, this defines all
Xi, i ≥ 1. We need to show that

X1 ∪ · · · ∪XM4.4N = X.

24



If not, then there would be some x∗ ∈ X\{∪M4.4N
i=1 Xi}. By the maximality of each Xi, the

restricted map ϕ : Xi∪{x∗} → B must fail to be 1-partial sampling, 1 ≤ i ≤M4.4N . That
is, for each i ∈ {1, . . . ,M4.4N}, there would be an xi ∈ Xi and a (ki, ji) ∈ I such that

Tki,ji ⊃ {ϕ(xi), ϕ(x∗)}.

Let (k∗, j∗) ∈ I be such that ϕ(x∗) ∈ Tk∗,j∗ . Then we have ki = k∗ and Tk∗,ji ⊃
{ϕ(xi), ϕ(x∗)} for every i ∈ {1, . . . ,M4.4N}. This in particular implies that Tk∗,j∗∩Tk∗,ji 6=
∅. Therefore

card({j∗} ∪ {ji : 1 ≤ i ≤M4.4N}) ≤M4.4.

Since ϕ is an N -partial sampling map, it follows from this inequality that the inverse image
of the set Tk∗,j∗∪{∪M4.4N

i=1 Tk∗,ji} under ϕ contains at most M4.4N elements. But the above
also tells us that this inverse image contains x1, . . . , xM4.4N and x∗, M4.4N + 1 distinct
elements. This is a contradiction. �

For each m ∈ N, define Im = {(k, j) ∈ I : k ≤ m}.

Corollary 4.5. Suppose that zk,j ∈ Tk,j for every (k, j) ∈ I. Let 0 < t < ∞ and
2 ≤ p <∞. If f ∈ L2(S, dσ) and if Hf is bounded, then the inequality

Φ({‖Hfψzk,j ,t‖p}(k,j)∈Im) ≤ 2t(p−2)C3.3(t)M4.3M4.4‖(H∗fHf )p/2‖Φ

holds for every symmetric gauge function Φ and every m ≥ 1, where C3.3(t), M4.3 and
M4.4 are the constants provided by Proposition 3.3 and Lemmas 4.3, 4.4 respectively.

Proof. First of all, a symmetric gauge function Φ has the following obvious property: If A
is any countable set and if A = A1 ∪ · · · ∪AN , then for every map ϕ : A→ [0,∞) we have

(4.7) Φ({ϕ(α)}α∈A) ≤ Φ({ϕ(α)}α∈A1
) + · · ·+ Φ({ϕ(α)}α∈AN ).

Let m ≥ 1 be given and consider the map (k, j) 7→ zk,j from Im into B. Since zk,j ∈ Tk,j ,
if we apply Lemma 4.3 to the case ` = 0, we see that this map is M4.3-partial sampling.
Therefore, by Lemma 4.4, there is a partition

Im = E1 ∪ · · · ∪ EM4.4M4.3

such that for every 1 ≤ i ≤ M4.4M4.3, the map (k, j) 7→ zk,j is 1-partial sampling on
Ei. That is, the map (k, j) 7→ zk,j is injective on Ei and {zk,j : (k, j) ∈ Ei} is a partial
sampling set as defined in Definition 3.2. Hence Lemma 4.1 gives us

Φ({‖Hfψzk,j ,t‖p}(k,j)∈Ei) ≤ 2t(p−2)C3.3(t)‖(H∗fHf )p/2‖Φ

for every 1 ≤ i ≤M4.4M4.3. By (4.7), we also have

Φ({‖Hfψzk,j ,t‖p}(k,j)∈Im) ≤
M4.4M4.3∑

i=1

Φ({‖Hfψzk,j ,t‖p}(k,j)∈Ei).
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Obviously, the corollary follows from the above two inequalities. �

Lemma 4.6. Let h : B → [0,∞) be a map such that supw∈Tk,j h(w) < ∞ for every
(k, j) ∈ I. For each (k, j) ∈ I, let wk,j ∈ Tk,j be such that

(4.8) h(wk,j) ≥
1

2
sup

w∈Tk,j
h(w).

Suppose that zk,j ∈ Tk,j for every (k, j) ∈ I. Then the inequality

(4.9) Φ({h(ρ`(zk,j))}(k,j)∈Im) ≤ 2M4.3M4.422n`Φ({h(wk,j)}(k,j)∈Im)

holds for every pair of m, ` ∈ N and every symmetric gauge function Φ, where M4.3 and
M4.4 are the natural numbers provided by Lemmas 4.3 and 4.4 respectively.

Proof. Letm, ` ∈N be given. Define the map ϕ : Im →B by the formula ϕ(k, j) = ρ`(zk,j),
(k, j) ∈ Im. Then Lemma 4.3 tells us that ϕ is M4.322n`-partial sampling. By Lemma 4.4,
there is a partition

Im = Im,1 ∪ · · · ∪ Im,M4.4M4.322n`

such that for every 1 ≤ i ≤ M4.4M4.322n`, the restricted map ϕ : Im,i → B is 1-partial
sampling. By (1.2), we have ϕ(Im,i) ⊂ ∪(k,j)∈ImTk,j . Thus for every (k, j) ∈ I,

card{(κ, ν) ∈ Im,i : ϕ(κ, ν) ∈ Tk,j} ≤ 1 if 0 ≤ k ≤ m,
card{(κ, ν) ∈ Im,i : ϕ(κ, ν) ∈ Tk,j} = 0 if k > m.

This implies that for each 1 ≤ i ≤ M4.4M4.322n`, there exist a subset Ji of Im and a
bijection πi : Ji → Im,i such that ϕ(πi(k, j)) ∈ Tk,j for every (k, j) ∈ Ji. By (4.8), this
implies h(ϕ(πi(k, j))) ≤ 2h(wk,j) for every (k, j) ∈ Ji. Since πi is a bijection, we have

Φ({h(ϕ(κ, ν))}(κ,ν)∈Im,i) = Φ({h(ϕ(πi(k, j)))}(k,j)∈Ji) ≤ 2Φ({h(wk,j)}(k,j)∈Im)

for every 1 ≤ i ≤M4.4M4.322n`. By (4.7), we have

Φ({h(ϕ(κ, ν))}(κ,ν)∈Im) ≤
M4.4M4.322n`∑

i=1

Φ({h(ϕ(κ, ν))}(κ,ν)∈Im,i)

≤ 2M4.4M4.322n`Φ({h(wk,j)}(k,j)∈Im).

Since ϕ(κ, ν) = ρ`(zκ,ν), this proves the lemma. �

With the above preparation, the local inequality in Theorem 1.1 can now be applied:

Proposition 4.7. Given any 2n < p < ∞, there is a constant C4.7(p) such that the
following holds true: Let f ∈ L2(S, dσ). For each (k, j), let wk,j ∈ Tk,j be such that

(4.10) ‖Mmwk,j
Hfkwk,j‖ ≥

1

2
sup

w∈Tk,j
‖MmwHfkw‖.
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Let zk,j ∈ Tk,j , (k, j) ∈ I. Then we have

Φ({Varp/2(f − Pf ; zk,j)}(k,j)∈Im) ≤ C4.7(p)Φ({‖Mmwk,j
Hfkwk,j‖p}(k,j)∈Im)

for every symmetric gauge function Φ and every m ∈ N.

Proof. Given a 2n < p <∞, we pick a 0 < δ < 1/2 such that (1− 2δ)p > 2n. This allows
us to write (1− 2δ)p = 2n+ ε with some ε > 0. With this δ, Theorem 1.1 gives us

Var1/2(f − Pf ; zk,j) ≤ C(δ)
∞∑
`=1

1

2(1−δ)` ‖Mmρ`(zk,j)
Hfkρ`(zk,j)‖

for every (k, j) ∈ I. Now factor the 2−(1−δ)` above in the form 2−(1−δ)` = 2−(1−2δ)` · 2−δ`,
apply Hölder’s inequality to the sum

∑∞
`=1 with conjugate exponents p and p/(p− 1), and

then raise both sides to the power p. The result of this is

Varp/2(f − Pf ; zk,j) ≤ C1

∞∑
`=1

1

2(2n+ε)`
‖Mmρ`(zk,j)

Hfkρ`(zk,j)‖
p,

where C1 = Cp(δ)(2δp/(p−1) − 1)−(p−1). Since any symmetric gauge function Φ is a norm
on ĉ, the above inequality implies
(4.11)

Φ({Varp/2(f − Pf ; zk,j)}(k,j)∈Im) ≤ C1

∞∑
`=1

1

2(2n+ε)`
Φ({‖Mmρ`(zk,j)

Hfkρ`(zk,j)‖
p}(k,j)∈Im),

m ≥ 1. Now consider the map h : B→ [0,∞) defined by the formula

h(z) = ‖MmzHfkz‖p,

z ∈ B. Then (4.10) means that h and wk,j satisfy condition (4.8). Now apply Lemma 4.6.
For this particular h, (4.9) translates to

Φ({‖Mmρ`(zk,j)
Hfkρ`(zk,j)‖

p}(k,j)∈Im) ≤ 2M4.3M4.422n`Φ({‖Mmwk,j
Hfkwk,j‖p}(k,j)∈Im),

` ≥ 1. Substituting this inequality in (4.11), we see that the proposition holds for the
constant C4.7(p) = 2M4.3M4.4C1

∑∞
`=1 2−ε`. �

5. Lower bound

We need to bridge the gap between ‖MmzHfkz‖ and ‖Hfψz,t‖. For this, we recall

Lemma 5.1. [5,Lemma 3.3] There exists a constant C5.1 which depends only on the
complex dimension n such that the inequality ‖[P,Mmtz

]‖ ≤ C5.1t holds for all z ∈ B and
t > 0.
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Lemma 5.2. For all f ∈ L2(S, dσ), z ∈ B and 0 < t ≤ 1, we have

‖MmzHfkz‖ ≤ ‖Hfψz,t‖+ C5.1tVar1/2(f − Pf ; z),

where C5.1 is the constant mentioned in Lemma 5.1.

Proof. On page 3100 in [5], we proved that

‖MmzHfkz‖ ≤ ‖Hfψz,t‖+ C5.1t‖Hfkz‖.

But ‖Hfkz‖ ≤ Var1/2(f − Pf ; z). To see this, set ϕ = f − Pf − 〈(f − Pf)kz, kz〉. Then
‖Hfkz‖ = ‖Hϕkz‖ ≤ ‖ϕkz‖ = Var1/2(f − Pf ; z). This proves the lemma. �

Proposition 5.3. Given any 2n < p < ∞, there is a constant C5.3(p) such that the
following holds true: Let f ∈ L2(S, dσ) and suppose that the Hankel operator Hf is bounded.
For each (k, j), let zk,j ∈ Tk,j satisfy the condition

(5.1) Var(f − Pf ; zk,j) ≥
1

2
sup
z∈Tk,j

Var(f − Pf ; z).

Then the inequality

Φ({Varp/2(f − Pf ; zk,j)}(k,j)∈I) ≤ C5.3(p)‖(H∗fHf )p/2‖Φ

holds for every symmetric gauge function Φ.

Proof. For the given f ∈ L2(S, dσ), pick wk,j ∈ Tk,j such that

‖Mmwk,j
Hfkwk,j‖ ≥

1

2
sup

w∈Tk,j
‖MmwHfkw‖,

(k, j) ∈ I. Then by Proposition 4.7 we have

Φ({Varp/2(f − Pf ; zk,j)}(k,j)∈Im) ≤ C4.7(p)Φ({‖Mmwk,j
Hfkwk,j‖p}(k,j)∈Im)

for every symmetric gauge function Φ and every m ∈ N. Applying Lemma 5.2 to each
‖Mmwk,j

Hfkwk,j‖, for 0 < t ≤ 1 we have

Φ({Varp/2(f − Pf ; zk,j)}(k,j)∈Im) ≤ 2p−1C4.7(p)Φ({‖Hfψwk,j ,t‖p}(k,j)∈Im)

+ 2p−1C4.7(p)(C5.1t)
pΦ({Varp/2(f − Pf ;wk,j)}(k,j)∈Im).

Since wk,j ∈ Tk,j , it follows from (5.1) that Var(f −Pf ;wk,j) ≤ 2Var(f −Pf ; zk,j). Hence

Φ({Varp/2(f − Pf ; zk,j)}(k,j)∈Im) ≤ 2p−1C4.7(p)Φ({‖Hfψwk,j ,t‖p}(k,j)∈Im)

+ 2p−12p/2C4.7(p)(C5.1t)
pΦ({Varp/2(f − Pf ; zk,j)}(k,j)∈Im).
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Now, for the given 2n < p <∞, we pick 0 < t ≤ 1 such that 2p−12p/2C4.7(p)(C5.1t)
p ≤ 1/2.

This fixes the value of t in terms of p, and from the above inequality we obtain

Φ({Varp/2(f − Pf ; zk,j)}(k,j)∈Im) ≤ 2p−1C4.7(p)Φ({‖Hfψwk,j ,t‖p}(k,j)∈Im)

+ (1/2)Φ({Varp/2(f − Pf ; zk,j)}(k,j)∈Im).

Since Im is a finite set, the quantity Φ({Varp/2(f − Pf ; zk,j)}(k,j)∈Im) is finite. Therefore
after the obvious cancellation the above inequality becomes

Φ({Varp/2(f − Pf ; zk,j)}(k,j)∈Im) ≤ 2pC4.7(p)Φ({‖Hfψwk,j ,t‖p}(k,j)∈Im).

Finally, an application of Corollary 4.5 to the right-hand side gives us

Φ({Varp/2(f − Pf ; zk,j)}(k,j)∈Im) ≤ 2pC4.7(p)2t(p−2)C3.3(t)M4.3M4.4‖(H∗fHf )p/2‖Φ.

Since this holds for every m ∈ N, by (1.7) we have

Φ({Varp/2(f − Pf ; zk,j)}(k,j)∈I) ≤ 2pC4.7(p)2t(p−2)C3.3(t)M4.3M4.4‖(H∗fHf )p/2‖Φ.

This completes the proof of the proposition. �

We need to bring the Bergman metric into the proof of the lower bound.

Lemma 5.4. [18,Lemma 2.4] Given any 0 < a <∞, there exists a natural number K which
depends only on a and the complex dimension n such that the following holds true: Suppose
that Γ is an a-separated subset of B. Then there exist pairwise disjoint subsets Γ1, . . . ,ΓK
of Γ such that ∪Kµ=1Γµ = Γ and such that card(Γµ ∩ Tk,j) ≤ 1 for all µ ∈ {1, . . . ,K} and
(k, j) ∈ I.

We would like to alert the reader to the fact that although Lemma 5.4 looks identical
to Lemma 2.4 in [18], these two lemmas actually differ slightly. This is due to the fact
that the set Tk,j is defined slightly differently in [18]. Compare [18,(2.5)] with (3.7) in
this paper. But this slight difference in definition does not change the fact that there is
a 0 < C < ∞ such that the β-diameter of each Tk,j does not exceed 2C. Therefore the
proof of [18,Lemma 2.4] works verbatim here for Lemma 5.4.

Proposition 5.5. Given a > 0, let K be the natural number provided by Lemma 5.4. Let
2n < p <∞. Let f ∈ L2(S, dσ) and suppose that the Hankel operator Hf is bounded. Then
the inequality

Φ({Varp/2(f − Pf ; z)}z∈Γ) ≤ 2p/2KC5.3(p)‖(H∗fHf )p/2‖Φ

holds for every symmetric gauge function Φ and every a-separated set Γ in B, where C5.3(p)
is the constant provided by Proposition 5.3.

Proof. For each a-separated set Γ in B, Lemma 5.4 provides the partition

(5.2) Γ = Γ1 ∪ · · · ∪ ΓK
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such that card(Γi ∩ Tk,j) ≤ 1 for all i ∈ {1, . . . ,K} and (k, j) ∈ I. This means that for
each i ∈ {1, . . . ,K}, there is a subset I(i) of I such that

Γi = {z(i)
k,j : (k, j) ∈ I(i)}

and such that z
(i)
k,j ∈ Tk,j for every (k, j) ∈ I(i).

Let f ∈ L2(S, dσ) and suppose that Hf is bounded. Then for each (k, j) ∈ I pick

zk,j ∈ Tk,j such that (5.1) holds. Since z
(i)
k,j ∈ Tk,j , (5.1) implies

(5.3) Varp/2(f − Pf ; z
(i)
k,j) ≤ 2p/2Varp/2(f − Pf ; zk,j), (k, j) ∈ I(i).

Proposition 5.3 tells us that

Φ({Varp/2(f − Pf ; zk,j)}(k,j)∈I) ≤ C5.3(p)‖(H∗fHf )p/2‖Φ.

Combining this with (5.3), we find that

Φ({Varp/2(f − Pf ; z)}z∈Γi) = Φ({Varp/2(f − Pf ; z
(i)
k,j)}(k,j)∈I(i))

≤ 2p/2C5.3(p)‖(H∗fHf )p/2‖Φ.

By (5.2) and (4.7) we have

Φ({Varp/2(f − Pf ; z)}z∈Γ) ≤
K∑
i=1

Φ({Varp/2(f − Pf ; z)}z∈Γi).

Obviously, the proposition follows from the above two inequalities. �

One should view Proposition 5.5 as a rather general result, a result that may have
implications beyond this paper. But our immediate goal is to deduce the lower bound in
Theorem 1.3 from Proposition 5.5. As it turns out, this involves an interesting special
property of the family of symmetric gauge functions Φ+

p , 1 < p <∞.

Lemma 5.6. Suppose that 1 < p <∞. Let α = {α1, . . . , αk, . . . } be a sequence such that
αk ≥ 0 for every k ≥ 1 and

(5.4) α1 ≥ α2 ≥ · · · ≥ αk ≥ · · · .

Define
Fp(α) = sup

k≥1
k1/pαk.

Then
p− 1

p
Fp(α) ≤ Φ+

p (α) ≤ Fp(α).
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Proof. By (1.8), the upper bound Φ+
p (α) ≤ Fp(α) is obvious. To prove the lower bound,

note that for every k ∈ N,

k∑
j=1

1

j1/p
≤ 1 +

∫ k

1

1

x1/p
dx ≤ p

p− 1
k1−(1/p).

Therefore by (1.8) and (5.4), we have

Φ+
p (α) ≥ α1 + · · ·+ αk

1−1/p + · · ·+ k−1/p
≥ kαk
{p/(p− 1)}k1−(1/p)

=
p− 1

p
k1/pαk.

Since this holds for every k ∈ N, we have Φ+
p (α) ≥ {(p− 1)/p}Fp(α) as promised. �

Lemma 5.7. Let 1 < r < ∞, 1 < ρ < ∞ and p = ρr. Then for every sequence
α = {α1, . . . , αk, . . . } of non-negative numbers we have

ρ− 1

ρ

(
Φ+
p ({αk}k∈N)

)r ≤ Φ+
ρ ({αrk}k∈N) ≤

(
p

p− 1
Φ+
p ({αk}k∈N)

)r
.

Proof. If the sequence α fails to converge to 0, then both Φ+
ρ ({αrk}k∈N) and Φ+

p ({αk}k∈N)
are infinity, and the desired inequality holds trivially. Therefore we may assume αk → 0
as k →∞. Since αk → 0 as k →∞, discarding zeros and re-enumerating the other terms
if necessary, it suffices to consider the case where

α1 ≥ α2 ≥ · · · ≥ αk ≥ · · · .

Applying Lemma 5.6 and the relation ρr = p, we have

Φ+
ρ ({αrk}k∈N) ≤ Fρ({αrk}k∈N) = sup

k≥1
k1/ραrk =

(
sup
k≥1

k1/pαk

)r
= (Fp({αk}k∈N))

r ≤
(

p

p− 1
Φ+
p ({αk}k∈N)

)r
,

proving the upper bound. To obtain the lower bound, we also apply Lemma 5.6 and the
relation ρr = p. We have

Φ+
ρ ({αrk}k∈N) ≥ ρ− 1

ρ
Fρ({αrk}k∈N) =

ρ− 1

ρ
sup
k≥1

k1/ραrk =
ρ− 1

ρ

(
sup
k≥1

k1/pαk

)r
=
ρ− 1

ρ
(Fp({αk}k∈N))

r ≥ ρ− 1

ρ

(
Φ+
p ({αk}k∈N)

)r
.

This completes the proof. �

Proof of the lower bound in Theorem 1.3. Let 2n < p < ∞ and a > 0 be given. We need
to find a c > 0 that depends only on p, a and n such that the inequality

(5.5) ‖Hf‖+p ≥ cΦ+
p ({Var1/2(f − Pf ; z)}z∈Γ)
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holds for every f ∈ L2(S, dσ) and every a-separated set Γ in B.

Since p > 2n, we can pick an r such that 2n < r < p. Write ρ = p/r. Then

1 < ρ <∞ and ρr = p.

Given an f ∈ L2(S, dσ), to prove (5.5), we may assume that ‖Hf‖+p < ∞, for otherwise

there is nothing to prove. Note that the s-numbers of (H∗fHf )r/2 are (s1(Hf ))r, . . . ,
(sk(Hf ))r, . . . . By Lemma 5.7 and the relation ρr = p, we have

‖(H∗fHf )r/2‖+ρ = Φ+
ρ ({(sk(Hf ))r}k∈N})

≤
(

p

p− 1
Φ+
p ({sk(Hf )}k∈N})

)r
=

(
p

p− 1
‖Hf‖+p

)r
.(5.6)

Now we apply Proposition 5.5 to r and the symmetric gauge function Φ+
ρ . For any a-

separated set Γ, we have

(5.7) ‖(H∗fHf )r/2‖+ρ = ‖(H∗fHf )r/2‖Φ+
ρ
≥ (2r/2KC5.3(r))−1Φ+

ρ ({Varr/2(f −Pf ; z)}z∈Γ),

where K is determined by a. Applying Lemma 5.7 and the relation ρr = p again,

Φ+
ρ ({Varr/2(f − Pf ; z)}z∈Γ) ≥ ρ− 1

ρ

(
Φ+
p ({Var1/2(f − Pf ; z)}z∈Γ)

)r
.

Combining this with (5.6) and (5.7), we obtain(
p

p− 1
‖Hf‖+p

)r
≥ ρ− 1

2r/2ρKC5.3(r)

(
Φ+
p ({Var1/2(f − Pf ; z)}z∈Γ)

)r
.

Obviously, this implies (5.5), completing the proof of the lower bound in Theorem 1.3. �

6. A reverse Hölder’s inequality

Having proved the lower bound in Theorem 1.3, we will now turn our attention to the
upper bound. In the study of Hankel operators, upper bounds are inherently “two-sided”
problems, as it suffices to consider commutators of the form [P,Mg]. In our estimate of
‖[P,Mg]‖+p , the duality between symmetric gauge functions will play a crucial role. Let us
first recall this duality.

Given a symmetric gauge function Φ, the formula

Φ∗({bj}j∈N) = sup


∣∣∣∣∣∣
∞∑
j=1

ajbj

∣∣∣∣∣∣ : {aj}j∈N ∈ ĉ,Φ({aj}j∈N) ≤ 1

 , {bj}j∈N ∈ ĉ,

defines the symmetric gauge function that is dual to Φ [7,page 125]. For any A ∈ CΦ and
B ∈ CΦ∗ , we have

(6.1) |tr(AB)| ≤ ‖A‖Φ‖B‖Φ∗ .
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This follows from inequality (7.9) on page 63 of [7]. Moreover, we have the relation Φ∗∗ = Φ
[7,page 125]. This relation implies that

(6.2) Φ({aj}j∈N) = sup


∣∣∣∣∣∣
∞∑
j=1

ajbj

∣∣∣∣∣∣ : {bj}j∈N ∈ ĉ,Φ∗({bj}j∈N) ≤ 1


for each {aj}j∈N ∈ ĉ.

For each 1 < p <∞, define

Φ−p ({aj}j∈N) =

∞∑
j=1

|aπ(j)|
j(p−1)/p

, {aj}j∈N ∈ ĉ,

where π : N → N is any bijection such that |aπ(1)| ≥ |aπ(2)| ≥ · · · ≥ |aπ(j)| ≥ · · · , which
exists because each {aj}j∈N ∈ ĉ only has a finite number of nonzero terms. Then Φ−p is
a symmetric gauge function. Indeed it is well known that the pair of symmetric gauge
functions Φ+

p/(p−1) and Φ−p are dual to each other [7,pages 148-149]. We need the following

special property of Φ−p .

Lemma 6.1. Let 1 < p < ∞. Let X, Y be countable sets and let N ∈ N. Suppose that
T : X → Y is a map that is at most N -to-1. That is, card{x ∈ X : T (x) = y} ≤ N for
every y ∈ Y . Then for every set of real numbers {ay}y∈Y we have

Φ−p ({aT (x)}x∈X) ≤ max{p, 2}N1/pΦ−p ({ay}y∈Y ).

Proof. By (1.7), it suffices to consider the case {ai}i∈N ∈ ĉ where the terms are non-
negative and in the descending order: a1 ≥ a2 ≥ · · · ≥ ai ≥ · · · . Let N ∈ N and let
T : X → N be a map that is at most N -to-1. Now we define {bj}j∈N by the rule that

bj = ai if (i− 1)N + 1 ≤ j ≤ iN, i ∈ N.

That is, one can regard {bj}j∈N as the “direct sum” of N copies of {ai}i∈N. Since T
is at most N -to-1, there is a subset E of N such that Φ−p ({aT (x)}x∈X) = Φ−p ({bj}j∈E).
Therefore

(6.3) Φ−p ({aT (x)}x∈X) ≤ Φ−p ({bj}j∈N) =
∞∑
j=1

bj
jp/(p−1)

=

∞∑
i=1

ai

N∑
j=1

1

((i− 1)N + j)(p−1)/p
.

For each i ≥ 2, we have

N∑
j=1

1

((i− 1)N + j)(p−1)/p
≤ N

((i− 1)N)(p−1)/p
=
{i/(i− 1)}(p−1)/pN1/p

i(p−1)/p
≤ 2N1/p

i(p−1)/p
.
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For the term i = 1, we have
∑N
j=1 j

−(p−1)/p ≤ pN1/p = pN1/p/1(p−1)/p. Substituting
these in (6.3), the lemma follows. �

Recall from Section 3 that for each k ≥ 0, {uk,1, . . . , uk,m(k)} is a subset of S that is
maximal with respect to property (3.5). For each (k, j) ∈ I, we now define the sets

Bk,j = B(uk,j , 2
−k+2), Ck,j = B(uk,j , 2

−k+3) and Dk,j = Bk,j ×Bk,j .

Previously we introduced the finite subsets Im = {(k, j) ∈ I : k ≤ m}, m ∈ N, of I. But
now we need subsets of I of a different kind. From now on, for each ν ∈ Z+ we write

I(ν) = {(k, j) ∈ I : k ≥ ν}.

Lemma 6.2. There is a constant C6.2 that depends only on the complex dimension n
such that the following estimate holds: Suppose that {bk,j}(k,j)∈I is a set of non-negative
numbers and let ν ≥ 0. Define

b
(ν)
k+ν,i = max{bk,j : Bk,j ∩Bk+ν,i 6= ∅}

for every (k + ν, i) ∈ I(ν). Then for every 2 ≤ p <∞ we have

Φ−p ({b(ν)
k+ν,i}(k+ν,i)∈I(ν)) ≤ C6.2p2

2nν/pΦ−p ({bk,j}(k,j)∈I).

Proof. By (2.2) and (3.5), there is a natural number C6.2 such that for every triple of
k ≥ 0, 1 ≤ j ≤ m(k) and ν ≥ 0, we have

card{i : Bk,j ∩Bk+ν,i 6= ∅, 1 ≤ i ≤ m(k + ν)} ≤ C6.222nν .

Let {bk,j}(k,j)∈I and ν ≥ 0 be given. We define a map T : I(ν) → I in the following way.

For each (k + ν, i) ∈ I(ν), there is an h(k + ν, i) ∈ {1, . . . ,m(k)} which has the properties
that Bk,h(k+ν,i) ∩ Bk+ν,i 6= ∅ and that bk,h(k+ν,i) = max{bk,j : Bk,j ∩ Bk+ν,i 6= ∅}. Set

T (k + ν, i) = (k, h(k + ν, i)). The second property ensures that Φ−p ({b(ν)
k+ν,i}(k+ν,i)∈I(ν)) =

Φ−p ({bT (k+ν,i)}(k+ν,i)∈I(ν)), while the first property guarantees that T is at most C6.222nν-
to-1. Applying Lemma 6.1, we have

Φ−p ({b(ν)
k+ν,i}(k+ν,i)∈I(ν)) = Φ−p ({bT (k+ν,i)}(k+ν,i)∈I(ν)) ≤ p(C6.222nν)1/pΦ−p ({bk,j}(k,j)∈I).

Since C6.2 ≥ 1 and 1/p < 1, we have C
1/p
6.2 ≤ C6.2. Hence the lemma holds. �

In addition to the duality of between symmetric gauge functions, the estimate of
‖[P,Mg]‖+p also involves more mean oscillations in connection with our particular spherical
decomposition. For g ∈ L2(S, dσ) and (k, j) ∈ I we define

J(g; k, j) =
1

σ(Ck,j)

∫
Ck,j

|g − gCk,j |dσ and

Vt(g; k, j) =

{
24nk

∫∫
Dk,j

|g(x)− g(y)|tdσ(x)dσ(y)

}1/t

, 1 < t <∞.
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These mean oscillations play a significant role in the proof of the upper bound.

Lemma 6.3. Suppose that 1 < r < ∞, 1 < t < ∞, 1 < ρ < 2 and that these numbers
satisfy the condition 1 > r/t > (ρ − 1)/ρ. Then there is a constant C6.3 = C6.3(r, t, ρ, n)
such that

Φ+
ρ ({V rt (g; k, j)}(k,j)∈I) ≤ C6.3Φ+

ρ ({Jr(g; k, j)}(k,j)∈I)

for every g ∈ L2(S, dσ).

Proof. Let g ∈ L2(S, dσ), and consider a large m ∈ N. By (6.2) and by the duality between
Φ+
ρ and Φ−ρ/(ρ−1), there exists a set of non-negative numbers {ck,j : (k, j) ∈ Im} such that

Φ−ρ/(ρ−1)({ck,j}(k,j)∈Im) ≤ 1 and∑
(k,j)∈Im

ck,jV
r
t (g; k, j) ≥ 1

2
Φ+
ρ ({V rt (g; k, j)}(k,j)∈Im).

For convenience we define ck,j = 0 when k > m. Then

Φ−ρ/(ρ−1)({ck,j}(k,j)∈I) = Φ−ρ/(ρ−1)({ck,j}(k,j)∈Im) ≤ 1.

Let us analyze the sum

S =
∑

(k,j)∈Im

ck,jV
r
t (g; k, j).

For this we introduce the functions

gk(ζ) =
1

σ(B(ζ, 2−k−2))

∫
B(ζ,2−k−2)

gdσ, ζ ∈ S,

k ≥ 0. Since |g(ζ)− g(ξ)| ≤ |g(ζ)− gk(ζ)|+ |gk(ζ)− gk(ξ)|+ |gk(ξ)− g(ξ)|, we have

S ≤ C1

∑
(k,j)∈Im

ck,j

{
24nk

∫∫
Dk,j

|g(ζ)− gk(ζ)|tdσ(ζ)dσ(ξ)

}r/t

+ C1

∑
(k,j)∈Im

ck,j

{
24nk

∫∫
Dk,j

|gk(ζ)− gk(ξ)|tdσ(ζ)dσ(ξ)

}r/t

+ C1

∑
(k,j)∈Im

ck,j

{
24nk

∫∫
Dk,j

|gk(ξ)− g(ξ)|tdσ(ζ)dσ(ξ)

}r/t
,(6.4)

where C1 = 3r−1. By (2.2),∫∫
Dk,j

|g(ζ)− gk(ζ)|tdσ(ζ)dσ(ξ) = σ(Bk,j)

∫
Bk,j

|g − gk|tdσ

≤ A022n(−k+2)

∫
Bk,j

|g − gk|tdσ.
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Substituting this in (6.4), we find that

(6.5) S ≤ C1{2(A024n)r/tS1 + S2},

where

S1 =
∑

(k,j)∈Im

ck,j

{
22nk

∫
Bk,j

|g − gk|tdσ

}r/t
and

S2 =
∑

(k,j)∈Im

ck,j

{
24nk

∫∫
Dk,j

|gk(ζ)− gk(ξ)|tdσ(ζ)dσ(ξ)

}r/t
.

We analyze S1 and S2 separately.

For S1, note that for each pair of integers k ≥ 0 and s ≥ 0,

(6.6) 22nk

∫
Bk,j

|gk+s− gk+s+1|tdσ ≤
C2

σ(Bk,j)

∫
Bk,j

(|gk+s− gCk,j |t + |gCk,j − gk+s+1|t)dσ.

If ζ ∈ Bk,j = B(uk,j , 2
−k+2), then B(ζ, 2−k−s−2) ⊂ B(uk,j , 2

−k+3) = Ck,j and

|gk+s(ζ)− gCk,j | ≤
1

σ(B(ζ, 2−k−s−2))

∫
B(ζ,2−k−s−2)

|g − gCk,j |dσ

≤ C322ns

σ(Ck,j)

∫
Ck,j

|g − gCk,j |dσ = C322nsJ(g; k, j).(6.7)

A similar inequality holds for |gCk,j − gk+s+1(ζ)|, ζ ∈ Bk,j . Substituting these estimates
in (6.6), we obtain

(6.8) 22nk

∫
Bk,j

|gk+s − gk+s+1|tdσ ≤ C422nstJ t(g; k, j),

k ≥ 0, s ≥ 0. Obviously, |gBk,j − gCk,j | ≤ C5J(g; k, j). Combining this with (6.7), we have

22nk

∫
Bk,j

|gBk,j − gk|tdσ ≤ C6J
t(g; k, j).

Hence

22nk

∫
Bk,j

|g − gk|tdσ ≤ 2t−122nk

∫
Bk,j

|g − gBk,j |tdσ + 2t−122nk

∫
Bk,j

|gBk,j − gk|tdσ

≤ C7V
t
t (g; k, j) + C8J

t(g; k, j).(6.9)
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Suppose that ν ∈ N. If j, j′ ∈ {1, . . . ,m(k)} and i ∈ {1, . . . ,m(k + ν)} are such that
both intersections Bk,j ∩ Bk+ν,i and Bk,j′ ∩ Bk+ν,i are non-empty, then d(uk,j , uk,j′) ≤
3 · 2−k+2. Thus by (3.5) and (2.2), there is an M ∈ N such that the inequality

card{j : Bk,j ∩Bk+ν,i 6= ∅, 1 ≤ j ≤ m(k)} ≤M

holds for all k ≥ 0, ν ∈ N and i ∈ {1, . . . ,m(k+ ν)}. Now, for each triple of k ≥ 0, ν ∈ N
and i ∈ {1, . . . ,m(k + ν)}, define

(6.10) α
(ν)
k+ν,i = M max{ck,j : Bk,j ∩Bk+ν,i 6= ∅}.

Then for each pair of k ≥ 0 and ν ≥ 1, we have

m(k)∑
j=1

ck,j

{
22nk

∫
Bk,j

|g − gk+ν |tdσ

}r/t

≤ 2−2nνr/t

m(k)∑
j=1

ck,j
∑

Bk+ν,i∩Bk,j 6=∅

{
22n(k+ν)

∫
Bk+ν,i

|g − gk+ν |tdσ

}r/t

= 2−2nνr/t

m(k+ν)∑
i=1

{
22n(k+ν)

∫
Bk+ν,i

|g − gk+ν |tdσ

}r/t ∑
Bk,j∩Bk+ν,i 6=∅

ck,j

≤ 2−2nνr/t

m(k+ν)∑
i=1

α
(ν)
k+ν,i

{
22n(k+ν)

∫
Bk+ν,i

|g − gk+ν |tdσ

}r/t
,(6.11)

where the assumption r/t < 1 is used to justify the first ≤. For each ν ∈ N, we have

(6.12) S1 ≤ 2r−1(T1(ν) + T2(ν)),

where

T1(ν) =
∑

(k,j)∈Im

ck,j

{
22nk

∫
Bk,j

|g − gk+ν |tdσ

}r/t
and

T2(ν) =
∑

(k,j)∈Im

ck,j

{
22nk

∫
Bk,j

|gk+ν − gk|tdσ

}r/t
.

Denote

T3(ν) =
m∑

k=m−ν+1

m(k+ν)∑
i=1

α
(ν)
k+ν,i

{
22n(k+ν)

∫
Bk+ν,i

|g − gk+ν |tdσ

}r/t
.
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By (6.11) and (6.9), we have

T1(ν) ≤ 2−2nνr/t
m∑
k=0

m(k+ν)∑
i=1

α
(ν)
k+ν,i

{
22n(k+ν)

∫
Bk+ν,i

|g − gk+ν |tdσ

}r/t

= 2−2nνr/t
m−ν∑
k=0

m(k+ν)∑
i=1

α
(ν)
k+ν,i

{
22n(k+ν)

∫
Bk+ν,i

|g − gk+ν |tdσ

}r/t
+ 2−2nνr/tT3(ν)

≤ C92−2nνr/t
m−ν∑
k=0

m(k+ν)∑
i=1

α
(ν)
k+ν,iV

r
t (g; k + ν, i)

+ C102−2nνr/t
m−ν∑
k=0

m(k+ν)∑
i=1

α
(ν)
k+ν,iJ

r(g; k + ν, i) + 2−2nνr/tT3(ν).

Since {(k + ν, i) ∈ I : 0 ≤ k ≤ m− ν} is a subset of both Im and I(ν), by (6.2) we have

m−ν∑
k=0

m(k+ν)∑
i=1

α
(ν)
k+ν,iV

r
t (g; k + ν, i) ≤ Φ−ρ/(ρ−1)({α

(ν)
k+ν,i}(k+ν,i)∈I(ν))Φ

+
ρ ({V rt (g; k, j)}(k,j)∈Im).

Therefore

T1(ν) ≤ C92−2nνr/tΦ−ρ/(ρ−1)({α
(ν)
k+ν,i}(k+ν,i)∈I(ν))Φ

+
ρ ({V rt (g; k, j)}(k,j)∈Im)

+ C102−2nνr/tΦ−ρ/(ρ−1)({α
(ν)
k+ν,i}(k+ν,i)∈I(ν))Φ

+
ρ ({Jr(g; k, j)}(k,j)∈I) + 2−2nνr/tT3(ν).

By (6.10) and Lemma 6.2, we have

Φ−ρ/(ρ−1)({α
(ν)
k+ν,i}(k+ν,i)∈I(ν)) ≤MC6.2{ρ/(ρ− 1)}22nν(ρ−1)/ρΦ−ρ/(ρ−1)({ck,j}(k,j)∈I).

Write δ = (r/t)− {(ρ− 1)/ρ}. Recall that we have Φ−ρ/(ρ−1)({ck,j}(k,j)∈I) ≤ 1. Thus

T1(ν) ≤ C ′92−2nνδΦ+
ρ ({V rt (g; k, j)}(k,j)∈Im)

+ C ′102−2nνδΦ+
ρ ({Jr(g; k, j)}(k,j)∈I) + T3(ν),

where C ′9 = C9MC6.2{ρ/(ρ − 1)} and C ′10 = C10MC6.2{ρ/(ρ − 1)}. Substituting this in
(6.12) and then recalling (6.5), with C11 = 2rC1(A024n)r/t, we have

1

2
Φ+
ρ ({V rt (g; k, j)}(k,j)∈Im) ≤ S ≤ C11C

′
92−2nνδΦ+

ρ ({V rt (g; k, j)}(k,j)∈Im)

+ C11C
′
102−2nνδΦ+

ρ ({Jr(g; k, j)}(k,j)∈I)
+ C11(T2(ν) + T3(ν)) + C1S2.

Now comes the most crucial step in the proof. Since δ = (r/t) − {(ρ − 1)/ρ} is greater
than 0 by assumption, we can fix a ν ∈ N such that C11C

′
92−2nνδ ≤ 1/4. Since C11 and
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C ′9 depend only on n, r, t and ρ, this fixes the value of ν in terms of these numbers. With
C11C

′
92−2nνδ ≤ 1/4, an obvious cancellation in the above leads to

1

4
Φ+
ρ ({V rt (g; k, j)}(k,j)∈Im) ≤ C12Φ+

ρ ({Jr(g; k, j)}(k,j)∈I)

+ C11(T2(ν) + T3(ν)) + C1S2,(6.13)

where C12 = C11C
′
10. Next we estimate T2(ν), T3(ν) and S2.

For T2(ν), note that{
22nk

∫
Bk,j

|gk+ν − gk|tdσ

}r/t
≤ νr−1

ν−1∑
s=0

{
22nk

∫
Bk,j

|gk+s+1 − gk+s|tdσ

}r/t
≤ νrCr/t4 22nνrJr(g; k, j),

where the second ≤ follows from (6.8). Since the natural number ν is now fixed, we can

write C13 = νrC
r/t
4 22nνr. Recalling the definition of T2(ν), we have

T2(ν) ≤ C13

∑
(k,j)∈Im

ck,jJ
r(g; k, j) ≤ C13Φ−ρ/(ρ−1)({ck,j}(k,j)∈Im)Φ+

ρ ({Jr(g; k, j)}(k,j)∈Im)

≤ C13Φ+
ρ ({Jr(g; k, j)}(k,j)∈I).(6.14)

The estimate of T3(ν) is more interesting. Here, the main observation is that the total
number of k’s involved in T3(ν) is only ν: m− ν + 1 ≤ k ≤ m. Thus

(6.15) T3(ν) = Ym+1 + · · ·+ Ym+ν ,

where

Y` =

m(`)∑
i=1

α
(ν)
`,i

{
22n`

∫
B`,i

|g − g`|tdσ

}r/t
,

m+ 1 ≤ ` ≤ m+ ν. To estimate Y`, define

Y`,L =

m(`)∑
i=1

α
(ν)
`,i

{
22n`

∫
B`,i

|g`+L − g`|tdσ

}r/t
for L ∈ N. Write ε = δ/2 (recall that δ = (r/t)− {(ρ− 1)/ρ}). By Hölder’s inequality,

|g`+L − g`|t ≤
1

(1− 2−ε/(t−1))t−1

L−1∑
q=0

2εq|g`+q+1 − g`+q|t.

Since r/t < 1, this leads to

Y`,L ≤ C14

L−1∑
q=0

2εqZ`,q, where Z`,q =

m(`)∑
i=1

α
(ν)
`,i

{
22n`

∫
B`,i

|g`+q+1 − g`+q|tdσ

}r/t
.
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For each triple of ` ≥ m+ 1, q ≥ 0 and γ ∈ {1, . . . ,m(`+ q)}, define

(6.16) h`+q,γ = M max{α(ν)
`,i : B`,i ∩B`+q,γ 6= ∅}.

Then

Z`,q ≤
m(`)∑
i=1

α
(ν)
`,i

∑
B`,i∩B`+q,γ 6=∅

{
22n`

∫
B`+q,γ

|g`+q+1 − g`+q|tdσ

}r/t

≤ 2−2nqr/t

m(`+q)∑
γ=1

h`+q,γ

{
22n(`+q)

∫
B`+q,γ

|g`+q+1 − g`+q|tdσ

}r/t

≤ Cr/t4 2−2nqr/t

m(`+q)∑
γ=1

h`+q,γJ
r(g; `+ q, γ),

where for the last ≤ we use (6.8) in the case s = 0. By (6.16) and Lemma 6.2, we have

Φ−ρ/(ρ−1)({h`+q,γ}
m(`+q)
γ=1 ) ≤MC6.2{ρ/(ρ− 1)}22nq(ρ−1)/ρΦ−ρ/(ρ−1)({α

(ν)
k+ν,i}(k+ν,i)∈I(ν))

≤ {MC6.2{ρ/(ρ− 1)}}222nν(ρ−1)/ρ · 22nq(ρ−1)/ρ = C1522nq(ρ−1)/ρ.

By (6.2), we have

Z`,q ≤ Cr/t4 2−2nqr/tΦ−ρ/(ρ−1)({h`+q,γ}
m(`+q)
γ=1 )Φ+

ρ ({Jr(g; k, j)}(k,j)∈I)

≤ C162−2nqδΦ+
ρ ({Jr(g; k, j)}(k,j)∈I).

Since δ = 2ε, we now have

Y`,L ≤ C14C16

∞∑
q=0

2εq · 2−2nqδΦ+
ρ ({Jr(g; k, j)}(k,j)∈I) = C17Φ+

ρ ({Jr(g; k, j)}(k,j)∈I).

Obviously, g`+L(ζ)→ g(ζ) as L→∞ for σ-a.e. ζ ∈ S. Thus, by Fatou’s lemma,

Y` ≤ lim inf
L→∞

Y`,L ≤ C17Φ+
ρ ({Jr(g; k, j)}(k,j)∈I).

Recalling (6.15), if we write C18 = νC17, then

(6.17) T3(ν) ≤ C18Φ+
ρ ({Jr(g; k, j)}(k,j)∈I).

For S2, note that

24nk

∫∫
Dk,j

|gk(ζ)− gk(ξ)|tdσ(ζ)dσ(ξ) ≤ 2t24nkσ(Bk,j)

∫
Bk,j

|gk − gCk,j |tdσ

≤ C19

σ(Bk,j)

∫
Bk,j

|gk − gCk,j |tdσ ≤ C19C
t
3J

t(g; k, j),
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where the last ≤ follows from (6.7). Writing C20 = (C19C
t
3)r/t, we have

(6.18) S2 ≤ C20

∑
(k,j)∈Im

ck,jJ
r(g; k, j) ≤ C20Φ+

ρ ({Jr(g; k, j)}(k,j)∈I)

where the second ≤ follows from (6.2) and the fact that Φ−ρ/(ρ−1)({ck,j}(k,j)∈Im) ≤ 1.

Now if we set

C6.3 = 4{C12 + C11(C13 + C18) + C1C20},

then the combination of (6.13), (6.14), (6.17) and (6.18) gives us

Φ+
ρ ({V rt (g; k, j)}(k,j)∈Im) ≤ C6.3Φ+

ρ ({Jr(g; k, j)}(k,j)∈I).

Since C6.3 is independent of m, by (1.7) the above implies

Φ+
ρ ({V rt (g; k, j)}(k,j)∈I) ≤ C6.3Φ+

ρ ({Jr(g; k, j)}(k,j)∈I).

This completes the proof of the lemma. �

We now have the following “reverse Hölder’s inequality” involving Φ+
p :

Proposition 6.4. Suppose that 1 < p ≤ t < ∞. Then there is a constant C6.4 =
C6.4(p, t, n) such that

Φ+
p ({Vt(g; k, j)}(k,j)∈I) ≤ C6.4Φ+

p ({J(g; k, j)}(k,j)∈I)

for every g ∈ L2(S, dσ).

Proof. Given 1 < p ≤ t < ∞, we pick an r ∈ (max{1, p/2}, p) such that r/t > (p − r)/p.
With r so chosen, we set ρ = p/r. Then 1 < ρ < 2, ρr = p, and (ρ − 1)/ρ = (p − r)/p <
r/t < 1. Applying Lemma 6.3 to these r, t and ρ, we obtain

Φ+
ρ ({V rt (g; k, j)}(k,j)∈I) ≤ C6.3Φ+

ρ ({Jr(g; k, j)}(k,j)∈I),

g ∈ L2(S, dσ). On the other hand, since ρr = p, Lemma 5.7 tells us that

(Φ+
p ({Vt(g; k, j)}(k,j)∈I))r ≤ {ρ/(ρ− 1)}Φ+

ρ ({V rt (g; k, j)}(k,j)∈I)

and that

Φ+
ρ ({Jr(g; k, j)}(k,j)∈I) ≤ {p/(p− 1)}r(Φ+

p ({J(g; k, j)}(k,j)∈I))r.

Obviously, the proposition follows from the combination of these three inequalities. �

7. Interpolation
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Recall that for an operator A, we write s1(A), s2(A), · · · , sj(A), · · · for its s-numbers.
Furthermore, for each t > 0 we denote

NA(t) = card{j ∈ N : sj(A) > t}

as in [5]. Also recall from [5,(7.1)] that we have the inequality

NA+B(t) ≤ NA(t/2) +NB(t/2).

A common tool in the study of commutators is interpolation. See, e.g., [3,8]. But the
estimate of ‖[P,Mg]‖+p involves an interpolation of a rather ad hoc kind. This particular
interpolation requires quite a bit of work, including all the work in Section 6.

For this section we introduce the measure

dµ(x, y) =
dσ(x)dσ(y)

|1− 〈x, y〉|2n

on S × S. For each 1 < p < ∞, let Lpsym(S × S, dµ) be the collection of functions F on
S × S which are Lp with respect to dµ and which satisfy the condition

|F (x, y)| = |F (y, x)|, (x, y) ∈ S × S.

For each F ∈ Lpsym(S×S, dµ), define TF to be the integral operator on L2(S, dσ) with the
kernel function

KF (x, y) =
F (x, y)

(1− 〈x, y〉)n
.

Our interpolation begins with the requisite weak-type inequality.

Proposition 7.1. Given any 2 < p <∞, there is a constant C7.1 = C7.1(p, n) such that

NTF (t) ≤ C7.1

tp

∫
|F |pdµ =

C7.1

tp

∫∫
|F (x, y)|p

|1− 〈x, y〉|2n
dσ(x)dσ(y)

for all F ∈ Lpsym(S × S, dµ) and t > 0.

Proof. Given 2 < p <∞, we denote q = p/(p−1). Then 1 < q < 2. Let F ∈ Lpsym(S×S, dµ)
be given. For each x ∈ S, define η(x) to be the smallest quantity (non-negative number or
infinity) such that the inequality

σ({y ∈ S : |KF (x, y)|q > λ}) ≤ ηq(x)/λ

holds for all λ > 0. The proof is divided into two steps. The first step is to show that

(7.1) NTF (t) ≤
(

4

2− q
+ 2

)(
2

q − 1

)p
1

tp

∫
ηpdσ
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for all t > 0. Fix a t > 0 for the moment. To prove (7.1), define the set

G = Gt = {(x, y) ∈ S × S : |KF (x, y)| ≤ t−p+1 max{ηp(x), ηp(y)}}.

We have the factorization

KF (x, y) = θ(x, y)|KF (x, y)|, where |θ(x, y)| = 1,

on S × S. Now define the functions

G(x, y) =

 KF (x, y) if (x, y) ∈ G

t−p+1 max{ηp(x), ηp(y)}θ(x, y) if (x, y) /∈ G
and

B(x, y) =

 0 if (x, y) ∈ G

(|KF (x, y)| − t−p+1 max{ηp(x), ηp(y)})θ(x, y) if (x, y) /∈ G
.

Then
KF = G+B and TF = T1 + T2,

where T1 and T2 are the integral operators in L2(S, dσ) which have G and B as kernel
functions respectively. If x ∈ S is such that 0 < η(x) <∞, then∫

|B(x, y)|dσ(y) ≤
∫
|KF (x,y)|−t−p+1ηp(x)>0

(|KF (x, y)| − t−p+1ηp(x))dσ(y)

=

∫ ∞
0

σ({y : |KF (x, y)| − t−p+1ηp(x) > s})ds

=

∫ ∞
ηp(x)/tp−1

σ({y : |KF (x, y)| > s})ds ≤
∫ ∞
ηp(x)/tp−1

ηq(x)

sq
ds

=
ηq(x)

q − 1
· 1

(ηp(x)/tp−1)q−1
=

t

q − 1
.

A chase of the definitions shows that
∫
|B(x, y)|dσ(y) = 0 if either η(x) = 0 or η(x) =∞.

Therefore

(7.2)

∫
|B(x, y)|dσ(y) ≤ t

q − 1

for every x ∈ S. Since |KF (x, y)| = |KF (y, x)| we also have

(7.3)

∫
|B(x, y)|dσ(x) ≤ t

q − 1
.

It is well known that (7.2) and (7.3) together imply

(7.4) ‖T2‖ ≤
t

q − 1
.
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Next we estimate NT1(t). Writing ‖ · ‖2 for the Hilbert-Schmidt norm, we have

t2NT1
(t) ≤ ‖T1‖22 =

∫∫
|G|2dσdσ =

∫∫
G
|G|2dσdσ +

∫∫
(S×S)\G

|G|2dσdσ

≤
∫∫
|KF (x,y)|≤ηp(x)/tp−1

|KF (x, y)|2dσ(x)dσ(y)

+

∫∫
|KF (x,y)|≤ηp(y)/tp−1

|KF (x, y)|2dσ(x)dσ(y)

+

∫ (
ηp(x)

tp−1

)2

σ({y : |KF (x, y)| > ηp(x)/tp−1})dσ(x)

+

∫ (
ηp(y)

tp−1

)2

σ({x : |KF (x, y)| > ηp(y)/tp−1})dσ(y)

≤ 2

∫ (∫ ηp(x)/tp−1

0

2sσ({y : |KF (x, y)| > s})ds

)
dσ(x)

+ 2

∫ (
ηp(x)

tp−1

)2

σ({y : |KF (x, y)| > ηp(x)/tp−1})dσ(x).(7.5)

Using the definition of η(x) again, and using the fact that 2− q > 0, we have∫ ηp(x)/tp−1

0

2sσ({y : |KF (x, y)| > s})ds ≤
∫ ηp(x)/tp−1

0

2sηq(x)

sq
ds

=
2

2− q
ηq(x)(ηp(x)/tp−1)2−q =

2

2− q
· η

p(x)

tp−2
.(7.6)

On the other hand,

(7.7)

(
ηp(x)

tp−1

)2

σ({y : |KF (x, y)| > ηp(x)/tp−1}) ≤
(
ηp(x)

tp−1

)2
ηq(x)

(ηp(x)/tp−1)q
=
ηp(x)

tp−2
.

Substituting (7.6) and (7.7) back in (7.5), we have

t2NT1
(t) ≤

(
4

2− q
+ 2

)
1

tp−2

∫
ηpdσ.

Equivalently,

(7.8) NT1(t) ≤
(

4

2− q
+ 2

)
1

tp

∫
ηpdσ.

Now the relation TF = T1 + T2 leads to

NTF (2t/(q − 1)) ≤ NT1
(t/(q − 1)) +NT2

(t/(q − 1)).
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But (7.4) tells us that NT2(t/(q− 1)) = 0. Combining this with the fact that t/(q− 1) > t
and with (7.8), we now have

NTF (2t/(q − 1)) ≤ NT1
(t/(q − 1)) ≤ NT1

(t) ≤
(

4

2− q
+ 2

)
1

tp

∫
ηpdσ.

Thus (7.1) follows from this by an obvious substitution.

The second step in the proof of the proposition is to show that

(7.9)

∫
ηpdσ ≤ 2p/qAp−2

0

∫∫
|F (x, y)|p

|1− 〈x, y〉|2n
dσ(x)dσ(y),

where A0 is the constant in (2.2). To prove this, set α = p/(p− 2). For a Borel function ϕ
on S we define ‖ϕ‖α,∞ to be the smallest quantity (non-negative number or infinity) such
that the inequality

σ({y : |ϕ(y)|α > λ}) ≤ ‖ϕ‖αα,∞/λ

holds for all λ > 0. Fix an x ∈ S for the moment and define the functions

g(y) =
F (x, y)

(1− 〈x, y〉)2n/p
and h(y) =

1

(1− 〈x, y〉)n(1−(2/p))
.

Note that if ‖g‖p = 0, then x has the property η(x) = 0. Since F ∈ Lpsym(S × S, dµ), to
prove (7.9), it suffices to consider the case where 0 < ‖g‖p <∞. By (2.2), we have

σ({y : |h(y)|α > λ}) = σ({y : |1− 〈x, y〉| < λ−(1/n)})
= σ(B(x, λ−(1/2n))) ≤ A0(λ−(1/2n))2n = A0/λ.

Thus

(7.10) ‖h‖α,∞ ≤ A1/α
0 <∞.

Now suppose that
‖g‖p‖h‖α,∞ = a.

Then define
A = a1/(p−1) and B = a(p−2)/(p−1).

We have

(7.11) Ap = aq = Bα.

Since AB = a, there is a c > 0 such that if we set

G = g/c and H = ch,
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then

(7.12) ‖G‖p‖H‖α,∞ = a, ‖G‖p = A, and ‖H‖α,∞ = B.

For each λ > 0, consider the set

Eλ = {y : |KF (x, y)|q > λ} = {y : |g(y)h(y)|q > λ} = {y : |G(y)H(y)|q > λ}.

If z ∈ Eλ ∩ {y : |H(y)|α ≤ λ}, then λ < |G(z)H(z)|q ≤ |G(z)|qλq/α, i.e.,

|G(z)|q > λ1−(q/α) = λ1/(p−1), which means |G(z)|p > λ.

Hence
Eλ ⊂ {y : |H(y)|α > λ} ∪ {y : |G(y)|p > λ}

for every λ > 0. Recalling (7.11) and (7.12), we now have

σ(Eλ) ≤ σ({y : |H(y)|α > λ}) + σ({y : |G(y)|p > λ})
≤ λ−1(‖H‖αα,∞ + ‖G‖pp) = 2λ−1aq = 2λ−1(‖g‖p‖h‖α,∞)q.

Recalling the definitions of η(x) and g and recalling (7.10), this gives us

η(x) ≤ 21/q‖g‖p‖h‖α,∞ ≤ 21/qA
1/α
0

(∫
|F (x, y)|p

|1− 〈x, y〉|2n
dσ(y)

)1/p

.

This inequality holds for every x for which the right-hand side is finite. Since we assume
F ∈ Lpsym(S × S, dµ), the above inequality holds for σ-a.e. x ∈ S. This clearly implies
(7.9). Finally, the proposition follows from the combination of (7.1) and (7.9). �

For g ∈ L2(S, dσ) and (k, j) ∈ I, in addition to the J(g; k, j) introduced in Section 6,
let us also define

J2(g; k, j) =

{
1

σ(Ck,j)

∫
Ck,j

|g − gCk,j |2dσ

}1/2

.

By the Cauchy-Schwarz inequality, J(g; k, j) ≤ J2(g; k, j) for all g ∈ L2(S, dσ) and (k, j) ∈
I. Also, it is obvious that there is a constant C such that

24nk

∫∫
Dk,j

|g(y)− g(x)|2dσ(x)dσ(y) ≤ CJ2
2 (g; k, j)

for all g ∈ L2(S, dσ) and (k, j) ∈ I. Now comes the main step in the proof of the upper
bound in Theorem 1.3:

Proposition 7.2. Let 2 < p <∞. Then there is a constant C7.2 = C7.2(p, n) such that

(7.13) ‖[P,Mg]‖+p ≤ C7.2Φ+
p ({J2(g; k, j)}(k,j)∈I)
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for every g ∈ L2(S, dσ).

Proof. Given 2 < p <∞, we fix a λ ∈ (p,∞) for the proof. Let g ∈ L2(S, dσ) also be given.
Then we only need to consider the case where Φ+

p ({J2(g; k, j)}(k,j)∈I) <∞, for otherwise
(7.13) holds for trivial reasons. Since J(g; k, j) ≤ J2(g; k, j) for every (k, j) ∈ I, it follows
from Proposition 6.4 that

(7.14) Φ+
p ({Vλ(g; k, j)}(k,j)∈I) ≤ C6.4Φ+

p ({J2(g; k, j)}(k,j)∈I).

Let us estimate N[P,Mg ](t), t > 0. This is where interpolation comes in.

The ideal is to decompose the commutator in the form [P,Mg] = At + Bt and take
advantage of the inequality

N[P,Mg ](t) ≤ NAt(t/2) +NBt(t/2).

We will then estimate NAt(t/2) by Proposition 7.1 and estimate NBt(t/2) by using the
Hilbert-Schmidt norm ‖Bt‖2. But before any estimates, we need to define At and Bt first,
which has to be done carefully.

For convenience let us write

R = 21/p p

p− 1
C6.4Φ+

p ({J2(g; k, j)}(k,j)∈I).

By (7.14) and Lemma 5.6, there is a bijection π : N→ I such that

(7.15) Vλ(g;π(i)) ≤ R/i1/p for every i ∈ N.

Let I(t) = {π(i) : 1 ≤ i < (R/t)p}. For each k ≥ 0, let

Ek = {(x, y) ∈ S × S : 2−k ≤ d(x, y) < 2−k+1}.

Then Ek ⊂ ∪m(k)
j=1 (Bk,j ×Bk,j) = ∪m(k)

j=1 Dk,j , k ≥ 0. For each k ≥ 0, we define

Wk(t) = ∪(k,j)∈I(t)Dk,j .

Finally, we define

F (t) = ∪∞k=0{Ek\Wk(t)} and W (t) = ∪∞k=0{Ek ∩Wk(t)}.

Then F (t)∩W (t) = ∅ and F (t)∪W (t) = (S × S)\{(x, x) : x ∈ S}. Now we let At and Bt
be the integral operators on L2(S, dσ) with the kernel functions

χF (t)(x, y)
g(y)− g(x)

(1− 〈x, y〉)n
and χW (t)(x, y)

g(y)− g(x)

(1− 〈x, y〉)n

respectively. We first estimate NAt(t/2).
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For each k, since Ek ⊂ ∪m(k)
j=1 Dk,j , we have Ek\Wk(t) ⊂ ∪(k,j)∈I\I(t){Ek ∩ Dk,j}.

Hence∫∫
F (t)

|g(y)− g(x)|λ

|1− 〈x, y〉|2n
dσ(x)dσ(y) ≤

∑
(k,j)∈I\I(t)

∫∫
Ek∩Dk,j

|g(y)− g(x)|λ

|1− 〈x, y〉|2n
dσ(x)dσ(y)

≤
∑

(k,j)∈I\I(t)

24nk

∫∫
Dk,j

|g(y)− g(x)|λdσ(x)dσ(y) =
∑

(k,j)∈I\I(t)

{Vλ(g; k, j)}λ

=
∑

i≥(R/t)p

{Vλ(g;π(i))}λ ≤
∑

i≥(R/t)p

(R/i1/p)λ (by (7.15))

≤ Rλ · C1(max{1, R/t})p(1−(λ/p)) = C1R
λ(max{1, R/t})p−λ.

Form the definition of F (t) it is clear that (x, y) ∈ F (t) if and only if (y, x) ∈ F (t). Thus
we can apply Proposition 7.1 to obtain

NAt(t/2) ≤ C7.1(2/t)λ
∫∫

F (t)

|g(y)− g(x)|λ

|1− 〈x, y〉|2n
dσ(x)dσ(y)

≤ C7.1(2/t)λ · C1R
λ(max{1, R/t})p−λ ≤ 2λC1C7.1R

pt−p,(7.16)

where the last ≤ uses the assumption λ > p.

To estimate NBt(t/2), note that

‖Bt‖22 =

∫∫
W (t)

|g(y)− g(x)|2

|1− 〈x, y〉|2n
dσ(x)dσ(y) ≤

∑
(k,j)∈I(t)

∫∫
Ek∩Dk,j

|g(y)− g(x)|2

|1− 〈x, y〉|2n
dσ(x)dσ(y)

≤
∑

(k,j)∈I(t)

24nk

∫∫
Dk,j

|g(y)− g(x)|2dσ(x)dσ(y) ≤ C
∑

(k,j)∈I(t)

J2
2 (g; k, j).(7.17)

If we write
R′ = 21/p p

p− 1
Φ+
p ({J2(g; k, j)}(k,j)∈I),

then by Lemma 5.6 there is a bijection b : N→ I such that

J2(g; b(i)) ≤ R′/i1/p for every i ∈ N.

Since card(I(t)) < (R/t)p, continuing with (7.17), we have

‖Bt‖22 ≤ C
∑

b(i)∈I(t)

J2
2 (g; b(i)) ≤ C

∑
b(i)∈I(t)

(R′/i1/p)2 ≤ C
∑

1≤i<(R/t)p

(R′/i1/p)2

≤ C2(R′)2 · (R/t)p(1−(2/p)) = C2(R′)2Rp−2t−p+2.

Therefore
NBt(t/2) ≤ (2/t)2‖Bt‖22 ≤ 4C2(R′)2Rp−2t−p.
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Combining this with (7.16), we have

N[P,Mg ](t) ≤ {2λC1C7.1R
p + 4C2(R′)2Rp−2}t−p = C3{Φ+

p ({J2(g; k, j)}(k,j)∈I)}pt−p.

If ν ∈ N and tν > 0 are such that N[P,Mg ](tν) < ν, then sν([P,Mg]) ≤ tν . Hence it follows
from the above inequality that the s-numbers of [P,Mg] satisfy the condition

sν([P,Mg]) ≤ (2C3)1/pΦ+
p ({J2(g; k, j)}(k,j)∈I)ν−1/p

for every ν ∈ N. Therefore

‖[P,Mg]‖+p ≤ (2C3)1/pΦ+
p ({J2(g; k, j)}(k,j)∈I).

This completes the proof of the proposition. �

8. Upper bound

Proposition 7.2 represents the essential part of the proof of the upper bound in The-
orem 1.3. The remaining task in the proof of the upper bound is to bring Bergman lattice
into the picture, which is a rather routine exercise. The reader will find that the material
in this section closely resembles the second half of Section 2 in [18]. As such, an omission
of the proofs in this section is well justified. But we decide to retain the proofs for those
readers who are interested in details. Those who are not interested in details may wish to
go directly to the proof of the upper bound at the end of the section.

By [14,Theorem 2.2.2], we have

(8.1) 1− |ϕw(z)|2 =
(1− |w|2)(1− |z|2)

|1− 〈z, w〉|2
,

z, w ∈ B. For each (k, j) ∈ I, we define

w(k, j) = (1− 2−2k)1/2uk,j ,

which is an element in the set Tk,j defined by (3.7).

Lemma 8.1. Given any 0 < b <∞, there is a constant C8.1 which depends only on b and
n such that if z ∈ B and (k, j) ∈ I satisfy the condition w(k, j) ∈ D(z, b), then

J2(g; k, j) ≤ C8.1Var1/2(g; z)

for every g ∈ L2(B, dv).

Proof. A review of the definitions of J2 and Var1/2 tells us that it suffices to show that
there is a C such that the inequality

(8.2)
1

σ(Ck,j)
χCk,j ≤ C|kz|2
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holds on S whenever (k, j) ∈ I and z ∈ B satisfy the condition w(k, j) ∈ D(z, b). Since
σ(Ck,j) ≥ c2−2nk, (8.2) will follow if we can show that there are 0 < c1 <∞ and 0 < C2 <
∞ such that for (k, j) ∈ I and z ∈ B satisfying the condition w(k, j) ∈ D(z, b), we have

(8.3) 1− |z|2 ≥ c12−2k and |1− 〈ζ, z〉| ≤ C22−2k for each ζ ∈ Ck,j .

To prove this, suppose that D(z, b) contains some w(k, j). Suppose that 1− |z|2 < ε2−2k

for some ε > 0. Then by (8.1) we have

1− |ϕw(k,j)(z)| ≤ 1− |ϕw(k,j)(z)|2 ≤
(1− |w(k, j)|2) · ε2−2k

|1− 〈z, w(k, j)〉|2
≤ (1− |w(k, j)|2) · ε2−2k

(1− |w(k, j)|)2

=
(1 + |w(k, j)|)2 · ε2−2k

1− |w(k, j)|2
≤ 4ε.

Hence b ≥ β(w(k, j), z) ≥ (1/2) log{(4ε)−1}. Solving this inequality, we find that ε ≥
(1/4)e−2b. Therefore if we set c1 = (1/8)e−2b, then 1− |z|2 ≥ c12−2k.

To prove the other half of (8.3), we need an upper bound for 1 − |z|. Note that
|1− 〈z, w(k, j)〉| ≥ 1− |z|. Using (8.1) again, we have

1− |ϕw(k,j)(z)| ≤ 1− |ϕw(k,j)(z)|2 ≤
2(1− |z|) · (1− |w(k, j)|2)

|1− 〈z, w(k, j)〉|2
≤ 2 · 2−2k

1− |z|
.

Thus b ≥ (1/2) log{(1− |z|)/(2 · 2−2k)}, which implies 1− |z| ≤ 2e2b2−2k = C32−2k.

Let us write z = |z|ξ, where ξ ∈ S. We need an upper bound for d(uk,j , ξ). Suppose
that |1−〈uk,j , ξ〉| > A2−2k for someA > 0. Then 2|1−〈w(k, j), z〉| ≥ |1−〈uk,j , ξ〉| ≥ A2−2k.
Another application of (8.1) now gives us

1− |ϕw(k,j)(z)| ≤
(1− |w(k, j)|2) · 2(1− |z|)
|1− 〈z, w(k, j)〉|2

≤ 2−2k · 2C32−2k

((1/2)A2−2k)2
=

8C3

A2
.

Hence b ≥ (1/2) log{A2/(8C3)}. That is, A ≤ 2
√

2C
1/2
3 eb. Thus if we set C4 = 4C

1/2
3 eb,

then |1− 〈uk,j , ξ〉| ≤ C42−2k. That is, d(uk,j , ξ) ≤ C1/2
4 2−k.

Let ζ ∈ Ck,j = B(uk,j , 2
−k+3). Then d(ζ, ξ) ≤ d(ζ, uk,j) + d(uk,j , ξ) ≤ (8 +C

1/2
4 )2−k.

Thus if we set C5 = (8 + C
1/2
4 )2, then |1− 〈ζ, ξ〉| ≤ C52−2k. Hence

|1− 〈ζ, z〉| ≤ (1− |z|) + |1− 〈ζ, ξ〉| ≤ C32−2k + C52−2k.

This proves the second half of (8.3) and completes the proof of the lemma. �

Lemma 8.2. Given any 0 < b <∞, there is a natural number N such that for every z ∈
B, we have card{(k, j) ∈ I : w(k, j) ∈ D(z, b)} ≤ N .
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Proof. In the proof of Lemma 8.1 we showed that if w(k, j) ∈ D(z, b), then (c1/2)2−2k ≤
1 − |z| ≤ C32−2k, where c1 and C3 depend only on b. In other words, there is an m ∈ N
which depends only on b such that

2−2(k+m) ≤ 1− |z| ≤ 2−2(k−m)

if w(k, j) ∈ D(z, b). If w(k′, j′) also belongs toD(z, b), then 2−2(k+m) ≤ 1−|z| ≤ 2−2(k′−m).
Solving the inequality, we find that k′ ≤ k + 2m if w(k, j), w(k′, j′) ∈ D(z, a).

As in the previous proof, write z = |z|ξ, where ξ ∈ S. The previous proof tells us

that d(uk,j , ξ) ≤ C
1/2
4 2−k if w(k, j) ∈ D(z, b). Hence if both w(k, j) and w(k, ν) belong

to D(z, b), then d(uk,j , uk,ν) ≤ 2C
1/2
4 2−k. By (3.5) and (2.2), there is an N1 which is

determined by n and C4 such that

card{j ∈ {1, . . . ,m(k)} : w(k, j) ∈ D(z, b)} ≤ N1

for all k ≥ 0 and z ∈ B. Combining this with the conclusion of the preceding paragraph,
we see that card{(k, j) ∈ I : w(k, j) ∈ D(z, b)} ≤ (2m+ 1) ·N1. �

Recall that Lemma 6.1 concerns the particular symmetric gauge function Φ−p , 1 < p <
∞. In contrast, our next lemma provides a more crude estimate, but has the advantage
that it holds for all symmetric gauge functions.

Lemma 8.3. [18,Lemma 2.2] Suppose that X and Y are countable sets and that N is a
natural number. Suppose that T : X → Y is a map that is at most N -to-1. That is, for
every y ∈ Y , card{x ∈ X : T (x) = y} ≤ N . Then for every set of real numbers {by}y∈Y
and every symmetric gauge function Φ, we have

Φ({bT (x)}x∈X) ≤ NΦ({by}y∈Y ).

Proposition 8.4. Given any positive number 0 < b < ∞, there is a constant C8.4 which
depends only on b and n such that if Γ is a countable subset of B with the property that
∪z∈ΓD(z, b) = B, then

Φ({J2(g; k, j)}(k,j)∈I) ≤ C8.4Φ({Var1/2(g; z)}z∈Γ)

for every g ∈ L2(S, dσ) and every symmetric gauge function Φ.

Proof. Given b, let N be the natural number provided by Lemma 8.2. Suppose that Γ has
the property that ∪z∈ΓD(z, b) = B. Then for each (k, j) ∈ I, pick a z(k, j) ∈ Γ such that
w(k, j) ∈ D(z(k, j), b). By Lemma 8.1, for each g ∈ L2(S, dσ) and each symmetric gauge
function Φ we have

Φ({J2(g; k, j)}(k,j)∈I) ≤ C8.1Φ({Var1/2(g; z(k, j))}(k,j)∈I).

Lemma 8.2 tells us that the map (k, j) 7→ z(k, j) is at most N -to-1. Thus, by Lemma 8.3,

Φ({Var1/2(g; z(k, j))}(k,j)∈I) ≤ NΦ({Var1/2(g; z)}z∈Γ).
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Hence the constant C8.4 = NC8.1 suffices for the proposition. �

Proof of the upper bound in Theorem 1.3. Given an f ∈ L2(S, dσ), write g = f − Pf .
Then Hf = Hg. Let 2 < p < ∞ and b > 0. Let Γ be a countable subset of B such that
∪z∈ΓD(z, b) = B. Applying Propositions 7.2 and 8.4, we have

‖Hf‖+p = ‖Hg‖+p ≤ ‖[P,Mg]‖+p ≤ C7.2Φ+
p ({J2(g; k, j)}(k,j)∈I)

≤ C7.2C8.4Φ+
p ({Var1/2(g; z)}z∈Γ) = C7.2C8.4Φ+

p ({Var1/2(f − Pf ; z)}z∈Γ).

This completes the proof of Theorem 1.3. �

References

1. J. Arazy, S. Fisher and J. Peetre, Hankel operators on weighted Bergman spaces, Amer.
J. Math. 110 (1988), 989-1054.
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