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Abstract. The well-known von Neumann inequality for commuting row contractions can
be interpreted as saying that the tuple (Mz1 , . . . ,Mzn) on the Drury-Arveson space H2

n

dominates every other commuting row contraction (A1, . . . , An). We show that a similar
domination relation exists among certain pairs of “lessor” row contractions (B1, . . . , Bn)
and (A1, . . . , An). This hints at a possible hierarchical structure among the family of
commuting row contractions.

1. Introduction

Let B be the open unit ball in Cn. Throughout the paper, the complex dimension n is
always assumed to be greater than or equal to 2. Recall that the Drury-Arveson space H2

n

is the reproducing-kernel Hilbert space of analytic functions on B that has the function

1
1− 〈ζ, z〉

as its reproducing kernel [3,4,10]. Using the standard multi-index notation [17,page 3],
one can alternately describe H2

n as the Hilbert space of analytic functions on B where the
inner product is given by

〈f, g〉 =
∑
α∈Zn+

α!
|α|!

cαdα

for
f(ζ) =

∑
α∈Zn+

cαζ
α and g(ζ) =

∑
α∈Zn+

dαζ
α.

An important role in operator theory is played by by the commuting tuple (Mz1 , . . . ,Mzn)
of multiplication on H2

n by the coordinate functions z1, . . . , zn.

Recall from [3,4] that a commuting tuple of bounded operators (A1, . . . , An) on a
Hilbert space H is said to be a row contraction if it satisfies the inequality

A1A
∗
1 + · · ·+AnA

∗
n ≤ 1.

The tuple (Mz1 , . . . ,Mzn) on H2
n is, of course, an example of row contraction. In fact, it is

the “master” row contraction in the sense that for each polynomial p ∈ C[z1, . . . , zn], the
von Neumann inequality

(1.1) ‖p(A1, . . . , An)‖ ≤ ‖p(Mz1 , . . . ,Mzn)‖
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holds whenever the commuting tuple (A1, . . . , An) is a row contraction [3,10]. In this sense,
one might say that the tuple (Mz1 , . . . ,Mzn) “dominates” every row contraction.

Because of their obvious importance in operator theory, the Drury-Arveson space H2
n

and the von Neumann inequality (1.1) have been the subject of countless papers, of which
we cite [1-14] as a sample. What we will do in this paper is to look at the kind of “domina-
tion” relation illustrated above at a more refined level. One might consider the following
question. Suppose that we have two row contractions, (A1, . . . , An) and (B1, . . . , Bn). It
seems fair to say that (B1, . . . , Bn) dominates (A1, . . . , An) if the inequality

‖p(A1, . . . , An)‖ ≤ ‖p(B1, . . . , Bn)‖

holds for every polynomial p ∈ C[z1, . . . , zn]. Or, perhaps one can relax this condition
slightly: if there is a constant 0 < C <∞ such that

‖p(A1, . . . , An)‖ ≤ C‖p(B1, . . . , Bn)‖

for every polynomial p ∈ C[z1, . . . , zn], one might still say that the tuple (B1, . . . , Bn)
dominates the tuple (A1, . . . , An).

The main point is this: we are asking the rather restricted question whether a given
tuple (B1, . . . , Bn) dominates (whatever the word means) a particular (A1, . . . , An), not
the question whether it dominates a general class of (A1, . . . , An)’s. In other words, the
tuple (B1, . . . , Bn) may not be as dominating as the tuple (Mz1 , . . . ,Mzn) on H2

n, but does
it dominate (A1, . . . , An) nonetheless?

Obviously, this is an attempt to establish some sort of hierarchy, albeit partially,
among commuting tuples of operators. Equally obviously, such a general task is a monu-
mental undertaking, and perhaps requires the efforts of many researchers over many years.
What we actually manage to do in this paper is quite limited: we will give some interesting
examples of such a hierarchy.

The first hint of a possible hierarchical structure comes from the fact that the Drury-
Arveson space H2

n is really “the head of a family” of reproducing-kernel Hilbert spaces.
For each real number −n ≤ t < ∞, let H(t) be the Hilbert space of analytic functions on
B with the reproducing kernel

1
(1− 〈ζ, z〉)n+1+t

.

Alternately, one can describe H(t) as the completion of C[z1, . . . , zn] with respect to the
norm ‖ · ‖t arising from the inner product 〈·, ·〉t defined according to the following rules:
〈zα, zβ〉t = 0 whenever α 6= β,

(1.2) 〈zα, zα〉t =
α!∏|α|

j=1(n+ t+ j)

if α ∈ Zn+\{0}, and 〈1, 1〉t = 1. Obviously, H2
n = H(−n). Also, H(−1) is the Hardy space

H2(S), and H(0) is the Bergman space L2
a(B, dv).
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For each −n ≤ t < ∞, let (M (t)
z1 , . . . ,M

(t)
zn ) denote the tuple of multiplication by the

coordinate functions z1, . . . , zn on H(t). Then an easy calculation using (1.2) shows that

M (t)
z1 M

(t)∗
z1 + · · ·+M (t)

znM
(t)∗
zn = N(n+ t+N)−1,

where N is the number operator introduced by Arveson [3]; i.e., Nzα = |α|zα. This tells
us that each tuple (M (t)

z1 , . . . ,M
(t)
zn ) is a row contraction. Thus each (M (t)

z1 , . . . ,M
(t)
zn ) is

dominated by the tuple (M (−n)
z1 , . . . ,M

(−n)
zn ) = (Mz1 , . . . ,Mzn) on H(−n) = H2

n.

An obvious question at this point is, what about the “lessor” tuples (M (t)
z1 , . . . ,M

(t)
zn ),

−n < t <∞. What do they dominate? In the rest of the paper, we will attempt to answer
this question, and more.

2. Some General Results

We begin with some necessary notation. If A = (A1, . . . , An) is a commuting tuple of
operators and if α = (α1, . . . , αn) ∈ Zn+, we denote

Aα = Aα1
1 · · ·Aαnn and A∗α = A∗α1

1 · · ·A∗αnn ,

which extends the standard multi-index convention [17,page 3]. Also, we have

M
(t)
zα = M (t)α1

z1 · · ·M (t)αn
zn and M

(t)∗
zα = M (t)∗α1

z1 · · ·M (t)∗αn
zn

for α = (α1, . . . , αn) ∈ Zn+ and −n ≤ t <∞. For each −n ≤ t <∞, we define

u(α; t) =
1
α!

|α|∏
j=1

(n+ t+ j) for α ∈ Zn+\{0}

and u(0; t) = 1. Since the case t = −n is special, let us also write u(α) for u(α;−n), just
as we write Mzj for M (−n)

zj . In other words, we have u(α) = |α|!/α! for each α ∈ Zn+.

With u(α; t) defined as above, the standard orthonormal basis {e(t)α : α ∈ Zn+} for H(t)

can now be expressed by the formula

e(t)α (z) = u1/2(α; t)zα.

Using this, it is straightforward to verify that for each pair of α, β ∈ Zn+, we have

(2.1) M
(t)∗
zα zα+β =

u(β; t)
u(α+ β; t)

zβ .

Moreover, for α = (α1, . . . , αn) and γ = (γ1, . . . , γn) in Zn+, if there is a j such that αj > γj ,
then M

(t)∗
zα zγ = 0.
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Recall from [10] that if A = (A1, . . . , An) is a commuting tuple of operators on a
Hilbert space H for which there is an r ∈ (0, 1) such that

‖A∗1h‖2 + · · ·+ ‖A∗nh‖2 ≤ r2‖h‖2

for every h ∈ H, then the operator identity

(2.2)
∑
α∈Zn+

u(α)Aα(1−A1A
∗
1 − · · · −AnA∗n)A∗α = 1

holds on H. Perhaps, the correct way to think of (2.2) is that it is a “resolution” of the
identity operator 1. In [10], Drury showed that this resolution of the identity operator
immediately leads to the von Neumann inequality (1.1).

Our starting point is to try to replace the coefficients u(α) = |α|!/α! in (2.2) by u(α; s).
If u(α) is replaced by u(α; s) for some −n < s <∞, then obviously the defect operator

D = 1−A1A
∗
1 − · · · −AnA∗n

in (2.2) also needs to be replaced in order for the sum to converge. But what replaces D?
This is obviously a wild card in the game. With these replacements, one may only obtain
what we call a “quasi-resolution” of the identity operator. But, as we will now show, such
a quasi-resolution suffices for certain purposes.

Theorem 2.1. Let −n ≤ s < ∞, and let A = (A1, . . . , An) be a commuting tuple
of bounded operators on a Hilbert space H. Suppose that there is a positive self-adjoint
operator W on H for which the sum∑

α∈Zn+

u(α; s)AαWA∗α

converges in the weak operator topology to a bounded, positive, self-adjoint operator Y on
H. Then the operator Z : H → H(s) ⊗H given by the formula

(2.3) (Zh)(z) =
∑
α∈Zn+

u(α; s)W 1/2A∗αhzα, h ∈ H,

is bounded and has the properties that Z∗Z = Y and that

(2.4) Zp(A∗1, . . . , A
∗
n) = (p(M (s)∗

z1 , . . . ,M (s)∗
zn )⊗ 1)Z

for every polynomial p ∈ C[z1, . . . , zn]. Moreover, if there are scalars 0 < c ≤ C <∞ such
that the operator inequality c ≤ Y ≤ C holds on H, then the operator Z has the property
that c1/2‖h‖ ≤ ‖Zh‖ ≤ C1/2‖h‖ for every h ∈ H.
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Proof. First of all, the space H(s) ⊗H is the collection of H-valued H(s)-functions. That
is, H(s) ⊗H consists of functions of the form

f(z) =
∑
α∈Zn+

hαz
α,

where hα ∈ H for each α ∈ Zn+, with its norm given by the formula

(2.5) ‖f‖2 =
∑
α∈Zn+

‖hα‖2‖zα‖2s =
∑
α∈Zn+

‖hα‖2

u(α; s)
.

For each h ∈ H, it follows from (2.5) that

‖Zh‖2 =
∑
α∈Zn+

‖u(α; s)W 1/2A∗αh‖2

u(α; s)
=
∑
α∈Zn+

u(α; s)〈AαWA∗αh, h〉 = 〈Y h, h〉.

Thus if Y is bounded, then Z is also bounded and has the property that Z∗Z = Y . For
each α ∈ Zn+, we apply (2.1) to obtain

(ZA∗αh)(z) =
∑
β∈Zn+

u(β; s)W 1/2A∗βA∗αhzβ

=
∑
β∈Zn+

u(β; s)
u(α+ β; s)

u(α+ β; s)W 1/2A∗α+βhzβ

= (M (s)∗
zα ⊗ 1)

∑
γ∈Zn+

u(γ; s)W 1/2A∗γhzγ

= (M (s)∗
zα ⊗ 1)(Zh)(z),

h ∈ H. This clearly implies (2.4). Lastly, because of the relation Z∗Z = Y , if Y satisfies
the inequality c ≤ Y ≤ C on H, then c1/2‖h‖ ≤ ‖Zh‖ ≤ C1/2‖h‖ for every h ∈ H. �

Note that in Theorem 2.1, it is not necessary to assume the commuting tuple A =
(A1, . . . , An) to be a row contraction. But we will need to assume A = (A1, . . . , An) to be
a row contraction if we consider functional calculus beyond that for polynomials.

If f is an analytic function on B, for each 0 ≤ r < 1 we define the analytic function

fr(z) = f(rz), z ∈ B.

Suppose that commuting tuple A = (A1, . . . , An) is a row contraction on a Hilbert space
H. Then (1.1) implies that for each ξ = (ξ1, . . . , ξn) in the unit sphere S, we have

(2.6) ‖ξ̄1A1 + · · ·+ ξ̄nAn‖ ≤ ‖ξ̄1Mz1 + · · ·+ ξ̄nMzn‖ = ‖M〈z,ξ〉‖ = |ξ| = 1.
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This inequality allows us to define fr(A) for all f ∈ H∞(S) and 0 ≤ r < 1. Indeed for any
given pair of f ∈ H∞(S) and 0 ≤ r < 1, by the Cauchy integral formula

f(z) =
∫

f(ξ)
(1− 〈z, ξ〉)n

dσ(ξ),

where dσ is the spherical measure on S, we have

fr =
∞∑
j=0

cjr
jψf,j ,

where

ψf,j(z) =
∫
f(ξ)〈z, ξ〉jdσ(ξ) and cj =

(j + n− 1)!
j!(n− 1)!

.

It follows from (2.6) that ‖ψf,j(A)‖ ≤ ‖f‖∞ for every j ≥ 0. Since 0 ≤ r < 1, the limit

(2.7) fr(A) = lim
J→∞

J∑
j=0

cjr
jψf,j(A)

exists in the operator-norm topology.

Definition 2.2. For any commuting row contraction A = (A1, . . . , An), f ∈ H∞(S) and
0 ≤ r < 1, the operator fr(A) will henceforth be defined by (2.7).

For each −n ≤ t < ∞, we denote the collection of multipliers for the space H(t) by
M(t). The collection of multipliers for the Drury-Arveson space H2

n will also be denoted
by M. That is, M(−n) =M.

Lemma 2.3. Let −n ≤ t <∞ and f ∈M(t). Then for each 0 ≤ r < 1, we have fr ∈M(t)

and ‖M (t)
fr
‖ ≤ ‖M (t)

f ‖.

Proof. Let Tn denote the n-dimensional torus {(τ1, . . . , τn) : |τj | = 1, 1 ≤ j ≤ n}. Let
dmn be the Lebesgue measure on Tn with the normalization mn(Tn) = 1. For each
τ = (τ1, . . . , τn) ∈ Tn, define the unitary transformation Uτ on Cn by the formula

Uτ (z1, . . . , zn) = (τ1z1, . . . , τnzn).

Let f ∈ M(t). Then we obviously have ‖M (t)
f ‖ = ‖M (t)

f◦Uτ ‖, τ ∈ Tn. For each 0 ≤ r < 1,
define the function

Pr(τ1, . . . , τn) =
n∏
j=1

1− r2

|1− rτ̄j |2

on Tn. By the well-known properties of the Poisson kernel, we have

M
(t)
fr

=
∫
M

(t)
f◦UτPr(τ)dmn(τ).
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Since the integral of Pr on Tn equals 1 and Pr ≥ 0, the lemma follows. �

If −n ≤ t <∞ and f ∈M(t), then we obviously have

〈fp, q〉t = lim
r↑1
〈frp, q〉t

for all polynomials p, q ∈ C[z1, . . . , zn]. Combining this with the norm bound provided by
Lemma 2.3, we have

Corollary 2.4. For −n ≤ t <∞ and f ∈M(t), we have the weak convergence

lim
r↑1

M
(t)
fr

= M
(t)
f

on H(t).

Proposition 2.5. Let −n ≤ s < ∞, and let A = (A1, . . . , An) be a commuting row
contraction on a Hilbert space H. Suppose that there is a positive self-adjoint operator W
on H such that the sum

Y =
∑
α∈Zn+

u(α; s)AαWA∗α

converges in the weak operator topology. Furthermore, suppose that the sum Y satisfies the
operator inequality c ≤ Y ≤ C on H for some scalars 0 < c ≤ C < ∞. Then for each
f ∈M(s), the limit

(2.8) f(A) = lim
r↑1

fr(A)

exists in the weak operator topology. Moreover, the identity

(2.9) f(A)Z∗ = Z∗(M (s)
f ⊗ 1)

holds for every f ∈M(s), where Z : H → H(s) ⊗H is the operator given by (2.3).

Proof. Let f ∈M(s). Then by Theorem 2.1 we have

ψf,j(A)Z∗ = Z∗(M (s)
ψf,j
⊗ 1)

for each j ≥ 0. Combining this with (2.7), we have

(2.10) fr(A)Z∗ = Z∗(M (s)
fr
⊗ 1)

for every 0 ≤ r < 1. Since Z∗Z = Y and since we assume c ≤ Y ≤ C on H for some
0 < c ≤ C < ∞, the range of Z∗ contains Z∗ZH = Y H = H. That is, the operator
Z∗ : H(s) ⊗H → H is surjective. Thus given any h1 ∈ H, there is a g1 ∈ H(s) ⊗H such
that h1 = Z∗g1. Thus if h2 ∈ H, then

〈fr(A)h1, h2〉 = 〈fr(A)Z∗g1, h2〉 = 〈Z∗(M (s)
fr
⊗ 1)g1, h2〉 = 〈(M (s)

fr
⊗ 1)g1, Zh2〉.
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This equality and Corollary 2.4 together tell us that the weak limit (2.8) exists. Once this
is established, (2.9) follows from (2.10), (2.8) and another application of Corollary 2.4. �

Theorem 2.6. Let −n ≤ s <∞, and let A = (A1, . . . , An) be a commuting row contrac-
tion on a Hilbert space H. Suppose that there is a positive self-adjoint operator W on H
such that the sum

Y =
∑
α∈Zn+

u(α; s)AαWA∗α

converges in the weak operator topology. Furthermore, suppose that the sum Y satisfies the
operator inequality c ≤ Y ≤ C on H for some scalars 0 < c ≤ C <∞. Then the inequality

(2.11) ‖f(A)‖ ≤ (C/c)‖M (s)
f ‖

holds for every f ∈M(s).

Proof. Again, by Theorem 2.1 and the assumption on Y , we have Z∗ZH = Y H = H.
Thus for each h ∈ H, there is an h̃ ∈ H such that Z∗Zh̃ = h. By (2.9), for each f ∈M(s)

we have

‖f(A)h‖ = ‖f(A)Z∗Zh̃‖ = ‖Z∗(M (s)
f ⊗ 1)Zh̃‖ ≤ ‖Z∗‖‖M (s)

f ‖‖Z‖‖h̃‖.

Since ‖Z∗‖‖Z‖ = ‖Z‖2 = ‖Y ‖, we have

(2.12) ‖f(A)h‖ ≤ C‖M (s)
f ‖‖h̃‖.

But c‖h̃‖2 ≤ 〈Y h̃, h̃〉 = 〈h, h̃〉. An application of the Cauchy-Schwarz inequality gives us
c‖h̃‖ ≤ ‖h‖, i.e., ‖h̃‖ ≤ (1/c)‖h‖. Combining this with (2.12), (2.11) follows. �

Recall that the essential norm of a bounded operator B on a Hilbert space H is

‖B‖Q = inf{‖B +K‖ : K ∈ K(H)},

where K(H) is the collection of compact operators on H. Alternately, ‖B‖Q = ‖π(B)‖,
where π denotes the quotient homomorphism from B(H) to the Calkin algebra Q =
B(H)/K(H). If H is a separable Hilbert space, then for each B ∈ B(H) there exists a
sequence {xk} of unit vectors in H with the property that

lim
k→∞

〈xk, y〉 = 0 for every y ∈ H

such that
‖B‖Q = lim

k→∞
‖Bxk‖.

Theorem 2.7. Let −n ≤ s <∞, and let A = (A1, . . . , An) be a commuting row contrac-
tion on a separable Hilbert space H. Suppose that there is a positive, compact, self-adjoint
operator W on H such that the sum

Y =
∑
α∈Zn+

u(α; s)AαWA∗α
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converges in the weak operator topology. Furthermore, suppose that the operator Y has the
following two properties:

(a) There are scalars 0 < c ≤ C <∞ such that the operator inequality c ≤ Y ≤ C
holds on H;
(b) Y = 1 +K, where K is a compact operator on H.

Then the inequality
‖f(A)‖Q ≤ ‖M (s)

f ‖Q

holds for every f ∈M(s).

Proof. Let f ∈M(s). First of all, to prove the theorem, it suffices to prove that

(2.13) ‖f(A)∗‖Q ≤ ‖M (s)∗
f ‖Q.

To prove this, note that since H is assumed to be separable, there is a sequence of unit
vectors {hk} in H that converges to 0 weakly such that

‖f(A)∗‖Q = lim
k→∞

‖f(A)∗hk‖.

Obviously, the weak convergence hk → 0 implies that the sequence {f(A)∗hk} also con-
verges to 0 weakly. Recall from Theorem 2.1 that Z∗Z = Y . Since we now assume
Y = 1 +K, where K is compact, the weak convergence f(A)∗hk → 0 gives us

lim
k→∞

‖Zf(A)∗hk‖2 = lim
k→∞

〈Y f(A)∗hk, f(A)∗hk〉 = lim
k→∞

〈(1 +K)f(A)∗hk, f(A)∗hk〉

= lim
k→∞

‖f(A)∗hk‖2 = ‖f(A)∗‖2Q.

Thus (2.13) will follow if we can prove that

(2.14) lim
k→∞

‖Zf(A)∗hk‖ ≤ ‖M (s)∗
f ‖Q.

To prove this, we proceed as follows.

For each ` ∈ N, let E(s)
` denote the orthogonal projection from H(s) onto the linear

span of {zα : |α| ≤ `}. By (2.3), for each ` ∈ N we have

((E(s)
` ⊗ 1)Zh)(z) =

∑
|α|≤`

u(α; s)W 1/2A∗αhzα,

h ∈ H. Because the operator W is now assumed to be compact, each W 1/2A∗α is also
compact. Thus the weak convergence hk → 0 gives us

lim
k→∞

‖(E(s)
` ⊗ 1)Zhk‖ = 0

for every ` ∈ N. This clearly implies that for each compact operator L on H(s), we have

lim
k→∞

‖(L⊗ 1)Zhk‖ = 0.
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Combining this with (2.9), we have

lim
k→∞

‖Zf(A)∗hk‖ = lim
k→∞

‖(M (s)∗
f ⊗ 1)Zhk‖ = lim

k→∞
‖({M (s)∗

f + L} ⊗ 1)Zhk‖

whenever L ∈ K(H(s)). Thus if L ∈ K(H(s)), then

lim
k→∞

‖Zf(A)∗hk‖ ≤ ‖M (s)∗
f + L‖ lim sup

k→∞
‖Zhk‖.

Since this holds for every compact operator L on H(s), it follows that

(2.15) lim
k→∞

‖Zf(A)∗hk‖ ≤ ‖M (s)∗
f ‖Q lim sup

k→∞
‖Zhk‖.

Using the weak convergence hk → 0 and the compactness of K again, we have

lim sup
k→∞

‖Zhk‖2 = lim sup
k→∞

〈Y hk, hk〉 = lim sup
k→∞

〈(1 +K)hk, hk〉 = lim sup
k→∞

〈hk, hk〉 = 1.

Combining this with (2.15), we obtain (2.14). This completes the proof. �

3. A Family of Examples

The purpose of this section is to give some non-trivial examples of pairs of H and
A = (A1, . . . , An) to which the general results in Section 2 are applicable. In other words,
we want to show that, in a non-trivial sense, the results in Section 2 are not vacuous.

For this purpose, let us introduce another family of Hilbert spaces of analytic functions
on B. First of all, for each real number −n < t <∞, there is a natural number m(t) ≥ 4
such that

(3.1)
log(1 + (3/x))

log(2 + x)
≤ n+ t

x
whenever x ≥ m(t).

For each real value −n < t <∞, define the inner product 〈·, ·〉[t] according to the following
rules: 〈zα, zβ〉[t] = 0 for α 6= β in Zn+,

〈zα, zα〉[t] =
α! log(3 + |α|)∏|α|
j=1(n+ t+ j)

when |α| ≥ m(t),

〈zα, zα〉[t] =
α! log(3 +m(t))∏|α|
j=1(n+ t+ j)

when 0 < |α| < m(t),

and 〈1, 1〉[t] = log(3 + m(t)). In other words, 〈·, ·〉[t] is a modified version of the inner
product defined by (1.2). Let L[t] be the completion of C[z1, . . . , zn] with respect to the
norm

‖f‖[t] =
√
〈f, f〉[t].
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Furthermore, denote

µ(α; t) =
1

〈zα, zα〉[t]

for α ∈ Zn+. Then L[t] has an orthonormal basis {f [t]
α : α ∈ Zn+}, where

f [t]
α (z) = µ1/2(α; t)zα.

Note that

µ(α; t) =
u(α; t)

log(3 + |α|)
if |α| ≥ m(t) and

µ(α; t) =
u(α; t)

log(3 +m(t))
if 0 ≤ |α| < m(t).

Keep in mind that the spaces L[t] are only defined for the real values −n < t < ∞. For
each such value t, let

M [t]
z1 , . . . ,M

[t]
zn

denote the operators of multiplication by the coordinate functions z1, . . . , zn on L[t]. We
will denote the number operator on L[t] again by N . That is,

Nf [t]
α = |α|f [t]

α , α ∈ Zn+.

Proposition 3.1. For each −n < t < ∞, the commuting tuple (M [t]
z1 , . . . ,M

[t]
zn) on L[t] is

a row contraction.

Proof. For each i ∈ {1, . . . , n}, let εi be the element in Zn+ whose i-th component is 1 and
whose other components are 0. Then easy calculations show that

M [t]
ziM

[t]∗
zi f [t]

α =
µ(α− εi; t)
µ(α; t)

f [t]
α if the i-th component of α is not 0 and

M [t]
ziM

[t]∗
zi f [t]

α = 0 if the i-th component of α is 0.

Suppose that α = (α1, . . . αn). Then form the above we obtain

M [t]
ziM

[t]∗
zi f [t]

α =
αi

n+ t+ |α|
· log(3 + |α|)

log(2 + |α|)
f [t]
α if |α| ≥ m(t) + 1 and

M [t]
ziM

[t]∗
zi f [t]

α =
αi

n+ t+ |α|
· f [t]
α if 0 ≤ |α| ≤ m(t).

Hence
M [t]
z1M

[t]∗
z1 + · · ·+M [t]

znM
[t]∗
zn = N(n+ t+N)−1Gt(N),
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where Gt is the function on [0,∞) defined by the formula

Gt(x) =


log(3+x)
log(2+x) if x ≥ m(t) + 1

1 if 0 ≤ x < m(t) + 1
.

If x ≥ m(t) + 1, then

x

n+ t+ x
Gt(x) =

1
1 + {(n+ t)/x}

·

1 +
log
(

3+x
2+x

)
log(2 + x)


≤ 1

1 + {(n+ t)/x}
·
(

1 +
log(1 + (3/x))

log(2 + x)

)
≤ 1,

where the last ≤ follows from (3.1). Since we obviously have xGt(x)/(n + t + x) ≤ 1 for
0 ≤ x < m(t) + 1, the lemma is proved. �

For −n < t < ∞ and p ∈ C[z1, . . . , zn], we will write M [t]
p for the operator of multi-

plication by p on L[t]. Note that for each α = (α1, . . . , αn) ∈ Zn+, we have

M
[t]
zα = M [t]α1

z1 · · ·M [t]αn
zn .

The main result of this section is that if −n ≤ s < t <∞, then the tuple (M [t]
z1 , . . . ,M

[t]
zn)

is an example of A = (A1, . . . , An) to which Theorems 2.6 and 2.7 can be applied, if one
considers the operator W = (1 +N)−n−s−1 on L[t].

Proposition 3.2. Suppose that −n ≤ s < t <∞. Then the sum

Ys,t =
∑
α∈Zn+

u(α; s)M [t]
zα(1 +N)−n−s−1M

[t]∗
zα

converges in the weak operator topology. Moreover, the following two statements hold true:
(a) There exist constants 0 < c ≤ C < ∞ such that the operator inequality c ≤ Ys,t ≤ C
holds on L[t].
(b) There is a scalar ys,t ∈ (0,∞) such that Ys,t = ys,t+K, where K is a compact operator.

The proof of Proposition 3.2 needs some preparation. First of all, we need a crude
asymptotic formula for r(r + 1) · · · (r + k), r > 0. This is derived in the same way as
Stirling’s formula for factorial. Indeed from the identity

1
2
{f(1) + f(0)} =

∫ 1

0

f(x)dx− 1
2

∫ 1

0

(x2 − x)f ′′(x)dx

for C2-functions we obtain

k∑
j=0

log(r + j) =
1
2
{log r + log(r + k)}+

∫ k

0

log(r + x)dx+
1
2

k−1∑
j=0

∫ 1

0

x2 − x
(r + j + x)2

dx,

12



k ∈ N. Evaluating the integral
∫ k
0

and then exponentiating both sides, we find that

(3.2)
k∏
j=0

(r + j) = (r + k)r+k+(1/2)e−kec(r;k),

where c(r; k) has a finite limit (which depends on r) as k →∞.

In addition, the proof of Proposition 3.2 requires the following combinatorial lemma:

Lemma 3.3. Let γ ∈ Zn+. Then for each integer 0 ≤ k ≤ |γ| we have

(3.3)
∑

α+β=γ
|α|=k

γ!
α!β!

=
|γ|!

k!(|γ| − k)!
.

Proof. Let γ = (γ1, . . . , γn). Consider γ1 + · · · + γn mutually distinguishable candies.
Suppose that one divides these candies into n piles: the first pile has γ1 candies, the second
pile has γ2 candies, ..., the n-th pile has γn candies. Then the left-hand side of (3.3) is
exactly the number of ways of picking α1 candies out of the first pile, α2 candies out of the
second pile, ..., αn candies out the n-th pile, with the stipulation that α1 + · · ·+ αn = k.
This is obviously equal to the number of ways of simply picking k candies out of the entire
collection of γ1 + · · ·+ γn, which is given by the right-hand side of (3.3). �

Lemma 3.4. Given a pair of −n ≤ s < t <∞, define

(3.4) as,t(γ) =
∑

α+β=γ

u(α; s)µ(β; t)
µ(γ; t)(1 + |β|)n+s+1

for every γ ∈ Zn+. Then there is a ys,t ∈ (0,∞) such that

lim
|γ|→∞

as,t(γ) = ys,t.

Proof. Define the function ρt on [0,∞) by the rules that ρt(x) = x if x ≥ m(t) and that
ρt(x) = m(t) if 0 ≤ x < m(t). To prove the lemma, it suffices to consider γ with |γ| > m(t).
For such a γ, a chase of the definitions of u and µ gives us

as,t(γ) = âs,t(γ) + bs,t(γ),

where

âs,t(γ) =
∑

α+β=γ
α 6=0,α6=γ

log(3 + |γ|)
log(3 + ρt(|β|))

· γ!
α!β!

·
∏|α|
j=1(n+ s+ j)

∏|β|
j=1(n+ t+ j)

(1 + |β|)n+s+1
∏|γ|
j=1(n+ t+ j)

13



and

bs,t(γ) =
1

(1 + |γ|)n+s+1
+

log(3 + |γ|)
log(3 +m(t))

·
∏|γ|
j=1(n+ s+ j)∏|γ|
j=1(n+ t+ j)

.

In other words, bs,t(γ) is the sum of the terms α = 0 and α = γ in
∑
α+β=γ . Applying

(3.2), we have

bs,t(γ) ≤ 1
1 + |γ|

+
log(3 + |γ|)

log(3 +m(t))
· C (n+ s+ |γ|)n+s+|γ|+(1/2)

(n+ t+ |γ|)n+t+|γ|+(1/2)

≤ 1
1 + |γ|

+
log(3 + |γ|)

log(3 +m(t))
· C

(n+ t+ |γ|)t−s
.

Since t− s > 0, we have bs,t(γ)→ 0 as |γ| → ∞. Thus what remains to be shown is that

(3.5) lim
|γ|→∞

âs,t(γ) = ys,t

for some ys,t ∈ (0,∞).

To prove (3.5), note that an application of Lemma 3.3 gives us

âs,t(γ) =
|γ|−1∑
k=1

log(3 + |γ|)
log(3 + ρt(|γ| − k))

· |γ|!
k!(|γ| − k)!

·
∏k
j=1(n+ s+ j)

∏|γ|−k
j=1 (n+ t+ j)

(1 + |γ| − k)n+s+1
∏|γ|
j=1(n+ t+ j)

.

Applying the asymptotic expansion (3.2), we have

âs,t(γ) =
|γ|−1∑
k=1

E(|γ|, k)
log(3 + |γ|)

log(3 + ρt(|γ| − k))
· |γ||γ|+(1/2)

kk+(1/2)(|γ| − k)|γ|−k+(1/2)
×

(n+ s+ k)n+s+k+(1/2)(n+ t+ |γ| − k)n+t+|γ|−k+(1/2)

(1 + |γ| − k)n+s+1(n+ t+ |γ|)n+t+|γ|+(1/2)
,

where

(3.6) E(|γ|, k) =
ec(1,|γ|−1)+1

ec(1,k−1)+1ec(1;|γ|−k−1)+1
· e

c(n+s+1;k−1)+1ec(n+t+1;|γ|−k−1)+1

ec(n+t+1;|γ|−1)+1
.

We can further rewrite âs,t(γ) as

(3.7) âs,t(γ) =
|γ|−1∑
k=1

E(|γ|, k)F (|γ|, k)
log(3 + |γ|)

log(3 + ρt(|γ| − k))
· kn+s

|γ|n+t(|γ| − k)1+s−t
,

where

(3.8) F (|γ|, k) =

(
n+s+k
k

)n+s+k+(1/2)
(
n+t+|γ|−k
|γ|−k

)n+t+|γ|−k+(1/2)

(
1+|γ|−k
|γ|−k

)n+s+1 (
n+t+|γ|
|γ|

)n+t+|γ|+(1/2)
.
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A rearrangement of the powers in (3.7) then leads to
(3.9)

âs,t(γ) =
1
|γ|

|γ|−1∑
k=1

E(|γ|, k)F (|γ|, k)
log(3 + |γ|)

log(3 + ρt(|γ| − k))
·
(
k

|γ|

)n+s

·
(
|γ|
|γ| − k

)1+s−t

,

which obviously suggests that we should treat it as some sort of “Riemann sum”.

Next we define

G(m, k) =
log(3 +m)

log(3 + ρt(m− k))
for natural numbers 1 ≤ k < m. Then

(3.10) G(m, k) =
log
(

3+m
3+ρt(m−k)

)
+ log(3 + ρt(m− k))

log(3 + ρt(m− k))
= 1 +

log
(

3+m
3+ρt(m−k)

)
log(3 + ρt(m− k))

.

Recall that if j ≥ m(t), then ρt(j) = j. Therefore for each pair of 0 < η < 1/8 and ε > 0,
there exist a positive number M(η, ε) such that

(3.11) |G(m, k)− 1| ≤ ε if m ≥M(η, ε) and 1 ≤ k ≤ (1− η)m.

Moreover, since ρt(j) ≥ j for all j ∈ Z+, from (3.10) we obtain

(3.12) G(m, k) ≤ 1 + log
(

3 +m

3 +m− k

)
≤ 1 + log

(
3 +

m

m− k

)
for all natural numbers 1 ≤ k < m.

By (3.6) and (3.8), there exists a ws,t ∈ (0,∞) such that the following statement holds
true: For each pair of 0 < η < 1/8 and ε > 0, there exists a positive number M1(η, ε) such
that

(3.13) |E(m, k)F (m, k)− ws,t| ≤ ε if m ≥M1(η, ε) and ηm ≤ k ≤ (1− η)m.

On the other hand, it is obvious that there is a constant C1 such that

(3.14) E(m, k)F (m, k) ≤ C1 for all 1 ≤ k < m.

Now let an η ∈ (0, 1/8) be given. By (3.9), for γ ∈ Zn+ such that |γ| > min{m(t), 1/η}, we
can write

(3.15) âs,t(γ) = âs,t,η(γ) + â
(0)
s,t,η(γ) + â

(1)
s,t,η(γ),

where

âs,t,η(γ) =
1
|γ|

∑
η|γ|≤k≤(1−η)|γ|

E(|γ|, k)F (|γ|, k)G(|γ|, k)
(
k

|γ|

)n+s( 1
1− (k/|γ|)

)1+s−t

,

â
(0)
s,t,η(γ) =

1
|γ|

∑
1≤k<η|γ|

E(|γ|, k)F (|γ|, k)G(|γ|, k)
(
k

|γ|

)n+s( 1
1− (k/|γ|)

)1+s−t

,

â
(1)
s,t,η(γ) =

1
|γ|

∑
(1−η)|γ|<k≤|γ|−1

E(|γ|, k)F (|γ|, k)G(|γ|, k)
(
k

|γ|

)n+s( 1
1− (k/|γ|)

)1+s−t

.
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By (3.11) and (3.13), it is clear that

(3.16) lim
|γ|→∞

âs,t,η(γ) = ws,t

∫ 1−η

η

xn+s

(1− x)1+s−t
dx.

By (3.14) and (3.12), we have

â
(1)
s,t,η(γ) ≤ C1

|γ|
∑

(1−η)|γ|<k≤|γ|−1

{
1 + log

(
3 +

|γ|
|γ| − k

)}(
1

1− (k/|γ|)

)1+s−t

≤ C1

∫ 1

1−η

{
1 + log

(
3 +

1
1− x

)}
1

(1− x)1+s−t
dx.(3.17)

Similarly,

(3.18) â
(0)
s,t,η(γ) ≤ C1

∫ 2η

0

{
1 + log

(
3 +

1
1− x

)}
1

(1− x)1+s−t
dx.

Because of the condition t > s, we have∫ 1

0

{
1 + log

(
3 +

1
1− x

)}
1

(1− x)1+s−t
dx <∞.

Thus the combination of (3.15), (3.16), (3.17) and (3.18) gives us

lim
|γ|→∞

âs,t(γ) = ws,t

∫ 1

0

xn+s

(1− x)1+s−t
dx.

This proves (3.5) and completes the proof of the lemma. �

Corollary 3.5. For any given −n ≤ s < t <∞, there exist 0 < c ≤ C <∞ such that

c ≤ as,t(γ) ≤ C

for every γ ∈ Zn+.

Proof. The upper bound follows immediately from Lemma 3.4. The lower bound follows
from Lemma 3.4 and the obvious fact that as,t(γ) > 0 for every γ ∈ Zn+. �

Proof of Proposition 3.2. Obviously, on the space L[t] we have

(1 +N)−n−s−1 =
∑
β∈Zn+

(1 + |β|)−n−s−1f
[t]
β ⊗ f

[t]
β .

Therefore for each α ∈ Zn+,

M
[t]
zα(1 +N)−n−s−1M

[t]∗
zα =

∑
β∈Zn+

(1 + |β|)−n−s−1(M [t]
zαf

[t]
β )⊗ (M [t]

zαf
[t]
β )

=
∑
β∈Zn+

µ(β; t)
µ(α+ β; t)(1 + |β|)n+s+1

f
[t]
α+β ⊗ f

[t]
α+β .
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Consequently

Ys,t =
∑
α∈Zn+

u(α; s)M [t]
zα(1 +N)−n−s−1M

[t]∗
zα =

∑
γ∈Zn+

as,t(γ)f [t]
γ ⊗ f [t]

γ ,

where as,t(γ) is given by (3.4). Since {f [t]
γ : γ ∈ Zn+} is an orthonormal basis for L[t],

statement (b) follows from Lemma 3.4 and statement (a) follows from Corollary 3.5. �

If f is a multiplier for the space L[t], where −n < t < ∞, we will write M [t]
f for the

operator of multiplication by f on L[t].

Theorem 3.6. Suppose that −n ≤ s < t <∞. Then the following hold true:
(1) If f is a multiplier of H(s), then f is also a multiplier of L[t].
(2) There is a 0 < C3.6 <∞ such that ‖M [t]

f ‖ ≤ C3.6‖M (s)
f ‖ for every multiplier f of H(s).

(3) If f is a multiplier of H(s), then ‖M [t]
f ‖Q ≤ ‖M

(s)
f ‖Q.

Proof. Obviously, (1) follows from Propositions 2.5 and 3.2(a), while (2) follows from
Theorem 2.6 and Proposition 3.2(a). Note that the operator (1 + N)−n−s−1 is compact
on L[t]. Thus (3) follows from Theorem 2.7 and Proposition 3.2(b). �

In very clear terms, Theorem 3.6 tells us that if −n ≤ s < t < ∞, then the row
contraction (M (s)

z1 , . . . ,M
(s)
zn ) on H(s) dominates the row contraction (M [t]

z1 , . . . ,M
[t]
zn) on

L[t]. Next we will show that the roles of these two families can be reversed, so long as we
keep the condition s < t. More precisely, in analogy to Theorem 3.6, we have

Theorem 3.7. Suppose that −n < s < t <∞. Then the following hold true:
(1) If f is a multiplier of L[s], then f is also a multiplier of H(t).
(2) There is a 0 < C3.7 <∞ such that ‖M (t)

f ‖ ≤ C3.7‖M [s]
f ‖ for every multiplier f of L[s].

(3) If f is a multiplier of L[s], then ‖M (t)
f ‖Q ≤ ‖M

[s]
f ‖Q.

The proof of Theorem 3.7 will be given in Section 5, after we establish more general
results in Section 4.

4. More General Results

Note that the general results in Section 2 tell us under what condition the tuple
(M (s)

z1 , . . . ,M
(s)
zn ) on H(s) dominates another commuting row contraction (A1, . . . , An).

In this section we establish the analogous results for the tuple (M [s]
z1 , . . . ,M

[s]
zn ) on L[s],

−n < s < ∞. Then in Section 5 we give non-trivial applications of the results in this
section, just as Section 3 gives non-trivial applications of the results in Section 2.

The reader will notice that the proofs in this section are very similar to the corre-
sponding ones in Section 2. Although an omission of all the proofs in this section can be
justified, we decide to retain most of them here. But the reader may choose to skip the
proofs in this section, at least for a first reading.
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Theorem 4.1. Let −n < s < ∞, and let A = (A1, . . . , An) be a commuting tuple
of bounded operators on a Hilbert space H. Suppose that there is a positive self-adjoint
operator W on H for which the sum∑

α∈Zn+

µ(α; s)AαWA∗α

converges in the weak operator topology to a bounded, positive, self-adjoint operator Y on
H. Then the operator Z : H → L[s] ⊗H given by the formula

(4.1) (Zh)(z) =
∑
α∈Zn+

µ(α; s)W 1/2A∗αhzα, h ∈ H,

is bounded and has the properties that Z∗Z = Y and that

(4.2) Zp(A∗1, . . . , A
∗
n) = (p(M [s]∗

z1 , . . . ,M [s]∗
zn )⊗ 1)Z

for every polynomial p ∈ C[z1, . . . , zn]. Moreover, if there are scalars 0 < c ≤ C <∞ such
that the operator inequality c ≤ Y ≤ C holds on H, then the operator Z has the property
that c1/2‖h‖ ≤ ‖Zh‖ ≤ C1/2‖h‖ for every h ∈ H
Proof. Note that the space L[s] ⊗H is the collection of functions of the form

f(z) =
∑
α∈Zn+

hαz
α,

where hα ∈ H for each α ∈ Zn+, with its norm given by the formula

‖f‖2 =
∑
α∈Zn+

‖hα‖2‖zα‖2[s] =
∑
α∈Zn+

‖hα‖2

µ(α; s)
.

It follows that

‖Zh‖2 =
∑
α∈Zn+

‖µ(α; s)W 1/2A∗αh‖2

µ(α; s)
=
∑
α∈Zn+

µ(α; s)〈AαWA∗αh, h〉 = 〈Y h, h〉.

Thus for bounded Y , Z is also bounded and has the property that Z∗Z = Y . We have

M
[s]∗
zα zα+β =

µ(β; s)
µ(α+ β; s)

zβ

for each α ∈ Zn+. Thus

(ZA∗αh)(z) =
∑
β∈Zn+

µ(β; s)W 1/2A∗βA∗αhzβ

=
∑
β∈Zn+

µ(β; s)
µ(α+ β; s)

µ(α+ β; s)W 1/2A∗α+βhzβ

= (M [s]∗
zα ⊗ 1)

∑
γ∈Zn+

µ(γ; s)W 1/2A∗γhzγ

= (M [s]∗
zα ⊗ 1)(Zh)(z),
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h ∈ H. This clearly implies (4.2). Lastly, because of the relation Z∗Z = Y , if Y satisfies
the inequality c ≤ Y ≤ C on H, then c1/2‖h‖ ≤ ‖Zh‖ ≤ C1/2‖h‖ for every h ∈ H. �

Just as in Theorem 2.1, the commuting tuple A = (A1, . . . , An) in Theorem 4.1 was
not assumed to be a row contraction.

For each −n < t <∞, let M[t] denote the collection of multipliers for the space L[t].
Since L[t] is a reproducing-kernel Hilbert space, it follows that M[t] ⊂ H∞(S).

Lemma 4.2. Let −n < t <∞ and f ∈M[t]. Then for each 0 ≤ r < 1, we have fr ∈M[t]

and ‖M [t]
fr
‖ ≤ ‖M [t]

f ‖.

The proof of this lemma is the same as the proof of Lemma 2.3, which will not be
repeated here.

If −n < t <∞ and f ∈M[t], then we obviously have

〈fp, q〉[t] = lim
r↑1
〈frp, q〉[t]

for all polynomials p, q ∈ C[z1, . . . , zn]. Combining this with the norm bound provided by
Lemma 4.2, we have

Corollary 4.3. For −n < t <∞ and f ∈M[t], we have the weak convergence

lim
r↑1

M
[t]
fr

= M
[t]
f

on L[t].

Proposition 4.4. Let −n < s < ∞, and let A = (A1, . . . , An) be a commuting row
contraction on a Hilbert space H. Suppose that there is a positive self-adjoint operator W
on H such that the sum

Y =
∑
α∈Zn+

µ(α; s)AαWA∗α

converges in the weak operator topology. Furthermore, suppose that the sum Y satisfies the
operator inequality c ≤ Y ≤ C on H for some scalars 0 < c ≤ C < ∞. Then for each
f ∈M[s], the limit

(4.3) f(A) = lim
r↑1

fr(A)

exists in the weak operator topology. Moreover, the identity

(4.4) f(A)Z∗ = Z∗(M [s]
f ⊗ 1)

holds for every f ∈M[s], where Z : H → L[s] ⊗H is the operator given by (4.1).

Proof. Let f ∈M[s]. Then by Theorem 4.1 we have

ψf,j(A)Z∗ = Z∗(M [s]
ψf,j
⊗ 1)
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for each j ≥ 0, where, as we recall,

ψf,j(z) =
∫
f(ξ)〈z, ξ〉jdσ(ξ).

Combining the above with (2.7), we have

(4.5) fr(A)Z∗ = Z∗(M [s]
fr
⊗ 1)

for every 0 ≤ r < 1. Since Z∗Z = Y and since we assume c ≤ Y ≤ C on H for some
0 < c ≤ C < ∞, the range of Z∗ contains Z∗ZH = Y H = H. That is, the operator
Z∗ : L[s] ⊗H → H is surjective. Hence given any h1 ∈ H, there is a g1 ∈ L[s] ⊗H such
that h1 = Z∗g1. Thus if h2 ∈ H, then

〈fr(A)h1, h2〉 = 〈fr(A)Z∗g1, h2〉 = 〈Z∗(M [s]
fr
⊗ 1)g1, h2〉 = 〈(M [s]

fr
⊗ 1)g1, Zh2〉.

This equality and Corollary 4.3 together tell us that the weak limit (4.3) exists. Once this
is established, (4.4) follows from (4.5), (4.3) and another application of Corollary 4.3. �

Theorem 4.5. Let −n < s <∞, and let A = (A1, . . . , An) be a commuting row contrac-
tion on a Hilbert space H. Suppose that there is a positive self-adjoint operator W on H
such that the sum

Y =
∑
α∈Zn+

µ(α; s)AαWA∗α

converges in the weak operator topology. Furthermore, suppose that the sum Y satisfies the
operator inequality c ≤ Y ≤ C on H for some scalars 0 < c ≤ C <∞. Then the inequality

(4.6) ‖f(A)‖ ≤ (C/c)‖M [s]
f ‖

holds for every f ∈M[s].

Proof. Again, by Theorem 4.1 and the assumption on Y , we have Z∗ZH = Y H = H.
Thus for each h ∈ H, there is an h̃ ∈ H such that Z∗Zh̃ = h. By (4.4), for each f ∈M[s]

we have

‖f(A)h‖ = ‖f(A)Z∗Zh̃‖ = ‖Z∗(M [s]
f ⊗ 1)Zh̃‖ ≤ ‖Z∗‖‖M [s]

f ‖‖Z‖‖h̃‖.

Since ‖Z∗‖‖Z‖ = ‖Z‖2 = ‖Y ‖, we have

(4.7) ‖f(A)h‖ ≤ C‖M [s]
f ‖‖h̃‖.

But c‖h̃‖2 ≤ 〈Y h̃, h̃〉 = 〈h, h̃〉. An application of the Cauchy-Schwarz inequality gives us
c‖h̃‖ ≤ ‖h‖, i.e., ‖h̃‖ ≤ (1/c)‖h‖. Combining this with (4.7), (4.6) follows. �
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Theorem 4.6. Let −n < s <∞, and let A = (A1, . . . , An) be a commuting row contrac-
tion on a separable Hilbert space H. Suppose that there is a positive, compact, self-adjoint
operator W on H such that the sum

Y =
∑
α∈Zn+

µ(α; s)AαWA∗α

converges in the weak operator topology. Furthermore, suppose that the operator Y has the
following two properties:

(a) There are scalars 0 < c ≤ C <∞ such that the operator inequality c ≤ Y ≤ C
holds on H;
(b) Y = 1 +K, where K is a compact operator on H.

Then the inequality
‖f(A)‖Q ≤ ‖M [s]

f ‖Q

holds for every f ∈M[s].

Proof. Let f ∈M[s]. To prove the theorem, it suffices to show that

(4.8) ‖f(A)∗‖Q ≤ ‖M [s]∗
f ‖Q.

To prove this, note that since H is assumed to be separable, there is a sequence of unit
vectors {hk} in H that converges to 0 weakly such that

‖f(A)∗‖Q = lim
k→∞

‖f(A)∗hk‖.

The weak convergence hk → 0 implies that the sequence {f(A)∗hk} also converges to 0
weakly. Recall from Theorem 4.1 that Z∗Z = Y . Since we now assume Y = 1 +K, where
K is compact, the weak convergence f(A)∗hk → 0 gives us

lim
k→∞

‖Zf(A)∗hk‖2 = lim
k→∞

〈Y f(A)∗hk, f(A)∗hk〉 = lim
k→∞

〈(1 +K)f(A)∗hk, f(A)∗hk〉

= lim
k→∞

‖f(A)∗hk‖2 = ‖f(A)∗‖2Q.

Thus (4.8) will follow if we can prove that

(4.9) lim
k→∞

‖Zf(A)∗hk‖ ≤ ‖M [s]∗
f ‖Q.

To prove this, we proceed as follows.

For each ` ∈ N, let E[s]
` denote the orthogonal projection from L[s] onto the linear

span of {zα : |α| ≤ `}. By (4.1), for each ` ∈ N we have

((E[s]
` ⊗ 1)Zh)(z) =

∑
|α|≤`

µ(α; s)W 1/2A∗αhzα,
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h ∈ H. Because the operator W is now assumed to be compact, each W 1/2A∗α is also
compact. Thus the weak convergence hk → 0 gives us

lim
k→∞

‖(E[s]
` ⊗ 1)Zhk‖ = 0

for every ` ∈ N. This clearly implies that for each compact operator L on L[s], we have

lim
k→∞

‖(L⊗ 1)Zhk‖ = 0.

Combining this with (4.4), we obtain

lim
k→∞

‖Zf(A)∗hk‖ = lim
k→∞

‖(M [s]∗
f ⊗ 1)Zhk‖ = lim

k→∞
‖({M [s]∗

f + L} ⊗ 1)Zhk‖

whenever L ∈ K(L[s]). Thus if L ∈ K(L[s]), then

lim
k→∞

‖Zf(A)∗hk‖ ≤ ‖M [s]∗
f + L‖ lim sup

k→∞
‖Zhk‖.

Since this holds for every compact operator L on L[s], it follows that

(4.10) lim
k→∞

‖Zf(A)∗hk‖ ≤ ‖M [s]∗
f ‖Q lim sup

k→∞
‖Zhk‖.

Using the weak convergence hk → 0 and the compactness of K again, we have

lim sup
k→∞

‖Zhk‖2 = lim sup
k→∞

〈Y hk, hk〉 = lim sup
k→∞

〈(1 +K)hk, hk〉 = lim sup
k→∞

〈hk, hk〉 = 1.

Clearly, (4.9) follows from (4.10) and this equality. This completes the proof. �

5. Another Family of Examples

The purpose of this section is to use the results in Section 4 to prove Theorem 3.7. The
reader will notice that this section parallels Section 3, just as Section 4 parallels Section
2. We begin with

Lemma 5.1. Given −n < s < t <∞, define

(5.1) gs,t(γ) =
∑

α+β=γ

µ(α; s)u(β; t) log(3 + |β|)
u(γ; t)(1 + |β|)n+s+1

for every γ ∈ Zn+. Then there is a ys,t ∈ (0,∞) such that

lim
|γ|→∞

gs,t(γ) = ys,t.
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Proof. Recall that ρt : [0,∞)→ [m(t),∞) is defined by the rules that ρt(x) = x if x ≥ m(t)
and that ρt(x) = m(t) if 0 ≤ x < m(t). As in the proof of Lemma 3.4, it suffices to consider
γ with |γ| > m(t). Then a chase of the definitions of µ and u gives us

gs,t(γ) = ĝs,t(γ) + hs,t(γ),

where

ĝs,t(γ) =
∑

α+β=γ
α 6=0,α6=γ

log(3 + |β|)
log(3 + ρt(|α|))

· γ!
α!β!

·
∏|α|
j=1(n+ s+ j)

∏|β|
j=1(n+ t+ j)

(1 + |β|)n+s+1
∏|γ|
j=1(n+ t+ j)

and

hs,t(γ) =
log(3 + |γ|)

(1 + |γ|)n+s+1 log(3 +m(t))
+

log 3
log(3 + |γ|)

·
∏|γ|
j=1(n+ s+ j)∏|γ|
j=1(n+ t+ j)

.

That is, hs,t(γ) is the sum of the terms α = 0 and α = γ in
∑
α+β=γ . Applying (3.2),

hs,t(γ) ≤ log(3 + |γ|)
1 + |γ|

+ C
(n+ s+ |γ|)n+s+|γ|+(1/2)

(n+ t+ |γ|)n+t+|γ|+(1/2)
≤ log(3 + |γ|)

1 + |γ|
+

C

(n+ t+ |γ|)t−s
.

Since t− s > 0, we have hs,t(γ)→ 0 as |γ| → ∞. What remains to be shown is that

(5.2) lim
|γ|→∞

ĝs,t(γ) = ys,t

for some ys,t ∈ (0,∞).

To prove (5.2), we again apply Lemma 3.3, which gives us

ĝs,t(γ) =
|γ|−1∑
k=1

log(3 + |γ| − k)
log(3 + ρt(k))

· |γ|!
k!(|γ| − k)!

·
∏k
j=1(n+ s+ j)

∏|γ|−k
j=1 (n+ t+ j)

(1 + |γ| − k)n+s+1
∏|γ|
j=1(n+ t+ j)

.

Applying the asymptotic expansion (3.2), we have

ĝs,t(γ) =
|γ|−1∑
k=1

E(|γ|, k)
log(3 + |γ| − k)
log(3 + ρt(k))

· |γ||γ|+(1/2)

kk+(1/2)(|γ| − k)|γ|−k+(1/2)
×

(n+ s+ k)n+s+k+(1/2)(n+ t+ |γ| − k)n+t+|γ|−k+(1/2)

(1 + |γ| − k)n+s+1(n+ t+ |γ|)n+t+|γ|+(1/2)
,

where E(|γ|, k) is given by (3.6). We can further rewrite ĝs,t(γ) as

(5.3) ĝs,t(γ) =
|γ|−1∑
k=1

E(|γ|, k)F (|γ|, k)
log(3 + |γ| − k)
log(3 + ρt(k))

· kn+s

|γ|n+t(|γ| − k)1+s−t
,
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where F (|γ|, k) is given by (3.8). A rearrangement of the powers in (5.3) then leads to

(5.4) ĝs,t(γ) =
1
|γ|

|γ|−1∑
k=1

E(|γ|, k)F (|γ|, k)
log(3 + |γ| − k)
log(3 + ρt(k))

·
(
k

|γ|

)n+s

·
(
|γ|
|γ| − k

)1+s−t

.

As in the proof of Lemma 3.2, we will treat the above as some sort of “Riemann sum”.

Next we define

V (m, k) =
log(3 +m− k)
log(3 + ρt(k))

for natural numbers 1 ≤ k < m. Dividing both the numerator and the denominator by
logm, we see that

V (m, k) =

(
1 +

log
(

3+m−k
m

)
logm

)
·

1 +
log
(

3+ρt(k)
m

)
logm

−1

.

Recall that if j ≥ m(t), then ρt(j) = j. Therefore for each pair of 0 < η < 1/8 and ε > 0,
there exist a positive number M(η, ε) such that

(5.5) |V (m, k)− 1| ≤ ε if m ≥M(η, ε) and ηm ≤ k ≤ (1− η)m.

Moreover, since ρt(j) ≥ j for all j ∈ Z+, we have

V (m, k) ≤ log(3 +m)
log(3 + k)

=
log(3 +m)

logm
· logm

log(3 + k)
=

log(3 +m)
logm

1 +
log
(

m
3+k

)
log(3 + k)


≤ 2

(
1 + log

(
m

k + 1

))
(5.6)

if m ≥ 3 and 1 ≤ k < m.

Let an η ∈ (0, 1/8) be given. By (5.4), for γ ∈ Zn+ with |γ| > min{m(t), 1/η} we have

(5.7) ĝs,t(γ) = ĝs,t,η(γ) + ĝ
(0)
s,t,η(γ) + ĝ

(1)
s,t,η(γ),

where

ĝs,t,η(γ) =
1
|γ|

∑
η|γ|≤k≤(1−η)|γ|

E(|γ|, k)F (|γ|, k)V (|γ|, k)
(
k

|γ|

)n+s( 1
1− (k/|γ|)

)1+s−t

,

ĝ
(0)
s,t,η(γ) =

1
|γ|

∑
1≤k<η|γ|

E(|γ|, k)F (|γ|, k)V (|γ|, k)
(
k

|γ|

)n+s( 1
1− (k/|γ|)

)1+s−t

,

ĝ
(1)
s,t,η(γ) =

1
|γ|

∑
(1−η)|γ|<k≤|γ|−1

E(|γ|, k)F (|γ|, k)V (|γ|, k)
(
k

|γ|

)n+s( 1
1− (k/|γ|)

)1+s−t

.
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By (5.5) and (3.13), it is clear that

(5.8) lim
|γ|→∞

ĝs,t,η(γ) = ws,t

∫ 1−η

η

xn+s

(1− x)1+s−t
dx.

By (3.14) and (5.6), we have

ĝ
(1)
s,t,η(γ) ≤ C1

|γ|
∑

(1−η)|γ|<k≤|γ|−1

2(1− log(1− η))
(

1
1− (k/|γ|)

)1+s−t

≤ 2C1(1− log(1− η))
∫ 1

1−η

1
(1− x)1+s−t

dx.(5.9)

Similarly,

(5.10) ĝ
(0)
s,t,η(γ) ≤ C1

|γ|
∑

1≤k≤η|γ|

2(1 + log{|γ|/(k + 1)})
(1− (k/|γ|))1+s−t

≤ 2C1

∫ 2η

0

1 + log(1/x)
(1− x)1+s−t

dx.

Because of the condition t > s, we have∫ 1

0

1
(1− x)1+s−t

dx <∞.

Thus the combination of (5.7), (5.8), (5.9) and (5.10) gives us

lim
|γ|→∞

ĝs,t(γ) = ws,t

∫ 1

0

xn+s

(1− x)1+s−t
dx.

This proves (5.2) and completes the proof of the lemma. �

Corollary 5.2. For any given −n < s < t <∞, there exist 0 < c ≤ C <∞ such that

c ≤ gs,t(γ) ≤ C

for every γ ∈ Zn+.

Proof. The upper bound follows immediately from Lemma 5.1. The lower bound follows
from Lemma 5.1 and the obvious fact that gs,t(γ) > 0 for every γ ∈ Zn+. �

Proposition 5.3. Suppose that −n < s < t <∞. Define the operator

(5.11) Ws,t =
∑
β∈Zn+

log(3 + |β|)
(1 + |β|)n+s+1

e
(t)
β ⊗ e

(t)
β

on the space H(t). Furthermore, define

Ỹs,t =
∑
α∈Zn+

µ(α; s)M (t)
zαWs,tM

(t)∗
zα .
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Then the following two statements hold true:
(a) There exist constants 0 < c ≤ C < ∞ such that the operator inequality c ≤ Ỹs,t ≤ C
holds on H(t).
(b) There is a scalar ys,t ∈ (0,∞) such that Ỹs,t = ys,t+K, where K is a compact operator.

Proof. For each α ∈ Zn+ we have

M
(t)
zαWs,tM

(t)∗
zα =

∑
β∈Zn+

log(3 + |β|)
(1 + |β|)n+s+1

(M (t)
zα e

(t)
β )⊗ (M (t)

zα e
(t)
β )

=
∑
β∈Zn+

u(β; t) log(3 + |β|)
u(α+ β; t)(1 + |β|)n+s+1

e
(t)
α+β ⊗ e

(t)
α+β .

Consequently
Ỹs,t =

∑
γ∈Zn+

gs,t(γ)e(t)γ ⊗ e(t)γ ,

where gs,t(γ) is given by (5.1). Since {e(t)γ : γ ∈ Zn+} is an orthonormal basis for H(t),
statement (b) follows from Lemma 5.1 and statement (a) follows from Corollary 5.2. �

Proof of Theorem 3.7. Obviously, (1) follows from Propositions 4.4 and 5.3(a), while (2)
follows from Theorem 4.5 and Proposition 5.3(a). Note that the operator Ws,t defined by
(5.11) is compact. Thus (3) follows from Theorem 4.6 and Proposition 5.3(b). �

6. Beyond Interpolation

An immediate consequence of the combination of Theorems 3.6 and 3.7 is the following:

Corollary 6.1. Suppose that −n ≤ s < t <∞. Then the following hold true:
(a) If f is a multiplier of H(s), then f is also a multiplier of H(t).
(b) There is a 0 < C6.1 <∞ such that ‖M (t)

f ‖ ≤ C6.1‖M (s)
f ‖ for every multiplier of H(s).

(c) If f is a multiplier of H(s), then ‖M (t)
f ‖Q ≤ ‖M

(s)
f ‖Q.

Proof. Given a pair of −n ≤ s < t < ∞, pick an arbitrary s′ ∈ (s, t). Then Theorem
3.6 asserts M[s′] ⊂ M(s), and Theorem 3.7 asserts M(t) ⊂ M[s′]. Combining the two
inclusions, we haveM(t) ⊂M(s), proving (a). Now let f ∈M(s). Then Theorem 3.6 gives
us the inequalities

‖M [s′]
f ‖ ≤ C3.6‖M (s)

f ‖ and ‖M [s′]
f ‖Q ≤ ‖M

(s)
f ‖Q,

while by Theorem 3.7 we have

‖M (t)
f ‖ ≤ C3.7‖M [s′]

f ‖ and ‖M (t)
f ‖Q ≤ ‖M

[s′]
f ‖Q.

Obviously, (b) and (c) follow from these two sets of inequalities. �

Obviously, Corollary 6.1 is just one of many consequences of Theorems 3.6 and 3.7.
The reason that we single out Corollary 6.1 for mentioning is that we want to alert the
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reader to the fact that statements (a) and (b) in Corollary 6.1 can be alternately proved
through interpolation in the family of spaces {H(s) : −n ≤ s < ∞}. Moreover, the fact
that (a) and (b) in Corollary 6.1 can be obtained through interpolation was known long
ago [15,16].

By contrast, it is not clear how one can obtain (c) through interpolation, particularly
considering the fact that the “constant” in (c) is 1. In the literature, so far we have not
seen any estimates of essential norm obtained through interpolation of underlying spaces.

More important, Theorems 3.6 and 3.7 themselves are not obtainable through interpo-
lation, as each of these theorems involves two families of spaces, {H(s) : −n ≤ s <∞} and
{L(s) : −n < s < ∞}. In fact, the introduction of {L(s) : −n < s < ∞} was specifically
intended to take interpolation out of the picture. Thus Theorems 3.6 and 3.7 demonstrate
not only the fact that the general results in Sections 2 and 4 are not vacuous, but also that
these general results are genuinely non-trivial in that they accomplish what interpolation
does not.
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