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1. Introduction

Cross-language Information Retrieval (CLIR) is the problem of finding
documents that are expressed in a language different from that of the query.
For the purpose of this article, we restrict our attention to techniques for
ranked retrieval of documents containing terms in one language (which we
consistently refer to as f) based on query terms in some other language
(which we consistently refer to as e). A broad range of approaches to CLIR
involve some sort of direct mapping between terms in each language, either
from e to f (query translation) or from f to e (document translation). In
this article we argue that these are both ways of asking the more general
question “do terms e and f have the same meeting?” Moreover, we argue
that this more general question is in some sense the “right” question, for
the simple reason that it is the fundamental question that we ask when
performing monolingual retrieval. We therefore derive a “meaning matching”
framework, first introduced in (Wang and Oard, 2006), but presented here
in greater detail.

Instantiating such a model requires that we be specific about what we
mean by a “term.” In monolingual retrieval we might treat each distinct
word as a term, or we might group words with similar meanings (e.g., we
might choose to index all words that share a common stem as the same
term). But in CLIR there is no escaping the fact that synonymy is central to
what we are doing when we seek to match words that have the same meaning.
In this article we show through experiments that by modeling synonymy in
both languages we can improve efficiency at no cost (and indeed perhaps
with some improvement) in retrieval effectiveness. The new experiments in
this paper show that this effect is not limited to the three test collections on
which we had previously observed this result (Wang, 2005; Wang and Oard,
2006).

When many possible translations are known for a term, a fundamental
question is how we should select which translations to use. In our earlier
work, we had learned translation probabilities from parallel text and then
used however many translations were needed to reach a preset threshold
for the Cumulative Distribution Function (CDF) (Wang and Oard, 2006).
In this article we extend that work by comparing a CDF threshold to two
alternatives: (1) a threshold on the Probability Mass Function (PMF), and
(2) a fixed threshold on the number of translations. The results show that
thresholding the CDF or the PMF are good choices.
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The remainder of this article is organized as follows. Section 2 reviews the
salient prior work on CLIR. Section 3 then introduces our “meaning match-
ing” model and explains how some specific earlier CLIR techniques can be
viewed as restricted variants of that general model. Section 4 presents new
experiment results that demonstrate its utility and that explore which as-
pects of the model are responsible for the observed improvements in retrieval
effectiveness. Section 5 concludes the article with a summary of our findings
and a discussion of issues that could be productively explored in future work.

2. Background

Our meaning matching model brings together three key ideas that have
previously been shown to work well in more restricted contexts. In this
section we focus first on prior work on combining evidence from different
document-language terms to estimate useful weights for query terms in in-
dividual documents. We then trace the evolution of the idea that neither
translation direction may be as informative as using both together. Finally,
we look briefly at prior work on the question of which translations to use.

2.1. Estimating Query Term Weights

A broad class of information retrieval models can be thought of as com-
puting a weight for each query term in each document and then combining
those query term weights in some way to compute an overall score for each
document. This is the so-called “bag of words” model. Notable examples
are the vector space model, the Okapi BM25 measure, and some language
models.

In early work on CLIR a common approach was to replace each query term
with the translations found in a bilingual term list. When only one transla-
tion is known, this works as well as anything. But when different numbers
of translations are known for different terms this approach suffers from an
unhelpful imbalance (because common terms often have many translations,
but little discriminating power). Fundamentally this approach is flawed be-
cause it fails to structurally distinguish between different query terms (which
provide one type of evidence) and different translations for the same query
term (which provide a different type of evidence).

Pirkola (1998) was the first to articulate what has become the canonical
solution to this problem. Pirkola’s method estimates term specificity in essen-
tially the same way as is done when stemming is employed in same-language
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retrieval (i.e., any document term that can be mapped to the query term is
counted). This has the effect of reducing the term weights for query terms
that have at least one translation that is a common term in the document
language, which empirically turns out to be a reasonable choice. The year
1998 was also when Nie et al. (1998) and McCarley and Roukos (1998) were
the first to try using learned translation probabilities rather than translations
found in a dictionary. They, and most researchers since, learned translation
probabilities from parallel (i.e., translation-equivalent) texts using techniques
that were originally developed for statistical machine translation (Knight,
1999).

The next year, Hiemstra and de Jong (1999) put these two ideas to-
gether, suggesting (but not testing) the idea of using translation probabili-
ties as weights on the counts of the known translations (rather than on the
Inverse Document Frequency (IDF) values, as Nie et al. (1998) had done,
or for selecting a single best translation, as (McCarley and Roukos, 1998)
had done). They described this as being “somewhat similar” to Pirkola’s
structured translation technique, since the unifying idea behind both was
that evidence combination across translations should be done before evi-
dence combination across query terms. Xu and Weischedel (2000) were the
first to actually run experiments using an elegant variant of this approach
in which the Term Frequency (TF) of term e, tf(e), was estimated in the
manner that Hiemstra and de Jong (1999) had suggested, but the Collection
Frequency (CF) of the term, cf(e), which served a role similar to Hiem-
stra’s document frequency, was computed using a separate query-language
corpus rather than being estimated through the translation mapping from
the document collection being searched.

Hiemstra and de Jong (1999) and Xu and Weischedel (2000) developed
their ideas in the context of language models. It remained for Darwish and
Oard (2003) to apply similar ideas to a vector space model. The key turned
out to be a computational simplification to Pirkola’s method that had been
introduced by Kwok (2000) in which the number of documents containing
each translation was summed to produce an upper bound on the number of
documents that could contain at least one of those translations. Darwish and
Oard (2003) showed this bound to be very tight (as measured by the extrinsic
effect on Mean Average Precision (MAP)), and from there the extension to
using translation probabilities as weights on term counts was straightforward.

Statistical translation models for machine translation are typically trained
on strings that represent one or more consecutive tokens, but for informa-
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tion retrieval some way of conflating terms with similar meanings can help
to alleviate sparsity without adversely affecting retrieval effectiveness. For
example, Fraser et al. (2002) trained an Arabic-English translation model on
stems (more properly, on the results of what it called “light stemming” for
Arabic). Our experiments with aggregation draw on a generalization of this
idea.

The idea of using learned translation probabilities as term weights re-
sulted in somewhat of a paradigm shift in CLIR. Earlier “dictionary-based”
techniques had rarely yielded MAP values much above 80% of that achieved
by a comparable monolingual system. But with translation probabilities
available we started seeing routine reports of 100% or more. For exam-
ple, Xu and Weischedel (2000) reported retrieval results that were 118% of
monolingual MAP (when compared using automatically segmented Chinese
terms), suggesting that (in the case of their experiments) if you wanted to
search Chinese you might actually be better off formulating your queries in
English!

2.2. Bidirectional Translation

Throughout these developments, the practice regarding whether to trans-
late f to e or e to f remained somewhat inconsistent. Nie et al. (1998) (and
later Darwish and Oard (2003)) thought of the problem as query translation,
while McCarley and Roukos (1998), Hiemstra and de Jong (1999) and Xu
and Weischedel (2000) thought of it as document translation. In reality, of
course, nothing was being “translated.” Rather, counts were being mapped.

Indeed, the implications of choosing a direction weren’t completely clear
at that time. We can now identify three quite different things that have
historically been treated monolithically when “query translation” or “docu-
ment translation” is mentioned: (1) whether the processing is done at query
time or at indexing time, (2) which direction is assumed when learning the
word alignments from which translation probabilities were estimated (which
matters only because widely used efficient alignment techniques are asym-
metric), and (3) which direction is assumed when the translation probabilities
are normalized. We now recognize these as separable issues, and when ef-
fectiveness is our focus it is clear that the latter two should command our
attention. Whether computation is done at query time or at indexing time is,
of course, an important implementation issue, but if translation probabilities
don’t change the results will be the same either way.
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McCarley (1999) was the first to explore the possibility of using both
directions. He did this by building two ranked lists, one based on using the
one-best translation by p(e|f) and the other based on using the one-best
translation by p(f |e). Combining the two ranked lists yielded better MAP
than when either approach was used alone. Similar improvements have since
been reported by others using variants of that technique (Braschler, 2004;
Kang et al., 2004).

Boughanem et al. (2001) tried one way of pushing this insight inside
the retrieval system, simply filtering out potentially problematic translations
that were attested in only one direction. They did so without considering
translation probabilities, however, working instead with bilingual dictionar-
ies. On that same day, Nie and Simard (2001) introduced a generalization
of that approach in which translation probabilities for each direction could
be interpreted to as partially attesting the translation pair. The product of
those probabilities was (after renormalization) therefore used in lieu of the
probability in either direction alone. Our experiments in (Wang and Oard,
2006) suggest that this can be a very effective approach, although the experi-
ments in Nie and Simard (2001) on a different test collection (and with some
differences in implementation details) were not as promising. As we show
in Section 4.1.3, the relative effectiveness of bidirectional and unidirectional
translation does indeed vary between test collections, but aggregation can
help to mitigate that effect and, regardless, bidirectional translation offers
very substantial efficiency advantages.

2.3. Translation Selection

One challenge introduced by learned translation probabilities is that there
can be a very long tail on the distribution (because techniques that rely on
automated alignment might in principle try to align any term in one language
with any term in the other). This leads to the need for translation selection,
one of the most thoroughly researched issues in CLIR. Much of that work
has sought to exploit context to inform the choice. For example, Federico
and Bertoldi (2002) used an order-independent bigram language model to
make choices in a way that would prefer translated words that are often
seen together. By relaxing the term independence assumption that is at the
heart of all bag-of-words models, these techniques seek to improve retrieval
effectiveness, but at some cost in efficiency. In this article, we have chosen to
focus on techniques that preserve term independence, all of which are based
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on simply choosing the most likely translations. The key question, then, is
how far down that list to go.

Perhaps the simplest alternative is to select some fixed number of trans-
lations. For example, Davis and Dunning (1995) used 100 translations, Xu
and Weischedel (2000) (observing that using large numbers of translations
has adverse implications for efficiency) used 20, and Nie et al. (1998) reported
results over a range of values. Such approaches are well suited to cases in
which a preference order among translations is known, but reliable trans-
lation probabilities are not available (as is the case for the order in which
translations are listed in some bilingual dictionaries).

Because the translation probability distribution is sharper for some terms
than others, it is attractive to consider alternative approaches that can make
use of that information. Two straightforward ways have been tried: Xu
and Weischedel (2000) used a threshold on the Probability Mass Function
(PMF), while Darwish and Oard (2003) used a threshold on the Cumulative
Distribution Function (CDF). We are not aware of comparisons between these
techniques, a situation we rectify in Section 4.1.3 and Section 4.2.3.

Another approach is to look holistically at the translation model rather
than at just the translations of any one term, viewing translation selection
as a feature selection problem in which the goal is to select some number
of features (i.e., translation pairs) in a way that maximizes some function
for the overall translation model between all term pairs. Kraaij et al. (2003)
reports that this approach (using an entropy function) yields results that are
competitive with using a fixed PMF threshold that is the same for all terms.
Our results suggest that the PMF threshold is indeed a suitable reference.
Future work to compare effectiveness, efficiency and robustness of approaches
based on entropy maximization with those based on a PMF threshold clearly
seems called for, although we do not add to the literature on that question
in this article.

3. Matching Meaning

In this section, we rederive our overarching framework for matching mean-
ings between queries and documents, presenting a set of computational im-
plementations that incorporate evidence from translation probabilities in dif-
ferent ways.
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3.1. IR as Matching Meaning

The basic assumption underlying meaning matching is that some hid-
den shared meaning space exists for terms in different languages. Meaning
matching across languages can thus be achieved by mapping the meanings
of individual terms into that meaning space, using it as a “bridge” between
terms in different languages. Homography and polysemy (i.e., terms that
have multiple distant or close meanings) result in the possibility of several
such “bridges” between the same pair of terms. This way of looking at the
problem suggests that the probability that two terms share the same mean-
ing can be computed as the summation over some “meaning space” of the
probabilities that both terms share each specific meaning.

for a query term e in Language E, we assume that each document-
language term fi (i = 1, 2, . . . , n) in Language F shares the meaning of e
that was intended by the searcher with some probability p(e ↔ fi) (i =
1, 2, . . . , n), respectively. We have coined the notation p(e ↔ fi) as a short-
hand for this meaning matching probability so as to avoid implying any one
translation direction in our basic notation. For a term in Language F that
does not share any meaning with e, the meaning matching probability be-
tween that term and e will be 0. Any uncertainty about the meaning of e is
reflected in these probabilities, the computation of which is described below.
If we see a term fi that matches the meaning of term e one time in document
dk, we can treat this as having seen query term e occurring p(e ↔ fi) times
in dk. If term fi occurs tf(fi, dk) times, our estimate of the total “occur-
rence” of query term e will be p(e ↔ fi)tf(fi, dk). Applying the usual term
independence assumption on the document side and considering all the terms
in document dk that might share a common meaning with query term e, we
get:

tf(e, dk) =
∑
fi

p(e ↔ fi)tf(fi, dk) (1)

Turning our attention to the df , if document dk contains a term fi that
shares a meaning with e, we can treat the document as if it possibly “con-
tained” e. We adopt a frequentist interpretation and increment the df by
the sum of the probabilities for each unique term that might share a com-
mon meaning with e. We then assume that terms are used independently in
different documents and estimate the df of query term e in the collection as:
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Figure 1: Matching term meanings through a shared meaning space

df(e) =
∑
fi

p(e ↔ fi)df(fi) (2)

Because we are interested only in relative scores when ranking documents,
we can (and do) perform document length normalization using the document-
language terms rather than the mapping of those terms to the query language.

Equations (1) and (2) show how the meaning matching probability be-
tween a query term and a document term can be incorporated into the com-
putation of term weight. The remaining question then becomes how the
meaning matching probability p(e ↔ f) can be modeled and computed for
any given pair of query term e and document term f .

3.2. Matching Abstract Term Meanings

Given a shared meaning space, matching term meaning involves map-
ping terms in different languages into this shared meaning space. Figure 1
illustrates this idea for a case in which two terms in the query language E
and three terms in the document language F share subsets of four differ-
ent meanings. At this point we treat “meaning” as an abstract concept; a
computational model of meaning is introduced in the next section. In our
example, term e2 has the same meaning as term f2 if and only if e2 and
f2 both express meaning m2 or e2 and f2 both express meaning m3. If we
assume that the searcher’s choice of meaning for e2 is independent of the
author’s choice of meaning for f2, we can compute the probabilities of those
two events. Generalizing to any pair of terms e and f :
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p(e ↔ f) =
∑
mi

p(mi|(e, f)) (3)

Applying Bayes’ rule, we get:

p(e ↔ f) =
∑
mi

p(mi, e, f)

p(e, f)

=
∑
mi

p((e, f)|mi)p(mi)

p(e, f)

(4)

Assume, given a meaning, that seeing a term in one language is con-
ditionally independent of seeing another term in the other language (i.e.,
p((e, f)|mi) = p(e|mi)p(f |mi)), then:

p(e ↔ f) =
∑
mi

p(e|mi)p(f |mi)p(mi)

p(e, f)

=
∑
mi

[
p(e,mi)

p(mi)

p(f,mi)

p(mi)
p(mi)]/p(e, f)

=
∑
mi

p(e,mi)p(f,mi)

p(mi)p(e, f)

=
∑
mi

[p(mi|e)p(e)][p(mi|f)p(f)]
p(mi)p(e, f)

=
∑
mi

[p(mi|e)p(mi|f)]
p(e)p(f)

p(mi)p(e, f)

(5)

Furthermore, assuming seeing a term in one language is (unconditionally)
independent of seeing another term in the other language (i.e., p(e, f) =
p(e)p(f)), Equation 5 then becomes:

p(e ↔ f) =
∑
mi

[p(mi|e)p(mi|f)]p(mi) (6)

Lastly, if we make the somewhat dubious but very useful assumption that
every possible shared meaning has an equal chance of being expressed, p(mi)
then becomes a constant. Therefore:
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p(e ↔ f) ∝
∑
mi

p(mi|e)p(mi|f) (7)

where:

• p(e ↔ f): the probability that term e and term f have the same
meaning.

• p(mi|e): the probability that term e has meaning mi

• p(mi|f): the probability that term f has meaning mi

For example (see Figure 1), if all possible meanings of every term were
equally likely, then p11 = p12 = 0.5, p22 = p23 = p24 = 0.33, p′11 = 1,
p′22 = p′23 = 0.5, and p′33 = p′35 = 0.5; and the meaning matching probability
between term e2 and term f2 will be: p(e2 ↔ f2) ∝ p22 × p′22 + p23 × p′23 =
0.33× 0.5 + 0.33× 0.5 = 0.33.

3.3. Using Synsets to Represent Meaning

We use “synsets,” sets of synonymous terms as a straightforward com-
putational model of meaning. To make this explicit, we denote a synset si
for each meaning mi in the shared meaning space, so the meaning matching
model described in Equation (7) simply becomes:

p(e ↔ f) ∝
∑
si

p(si|e)p(si|f) (8)

Our problem is now reduced to two subproblems: (1) creating synsets
si, and (2) computing the probability of any specific term mapping to any
specific synset p(si|e) and p(si|f). For the first task, it is obvious that to
be useful synset si must contain synonyms in both languages. One way to
develop such multilingual synsets is as follows:

1. Create synsets sEj
(j = 1, 2, . . . , l) in Language E;

2. Create synsets sFk
(k = 1, 2, . . . ,m) in Language F ;

3. Align synsets in two languages, resulting in a combined synset (sEi
, sFi

) (i =
1, 2, . . . , n), which we call si.
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Cross-language synset alignments are available from some sources, most
notably lexical resources such as EuroWordNet. However, mapping unre-
stricted text into WordNet is well known to be error prone (Voorhees, 1993).
Our early experiments with EuroWordNet proved to be disappointing (Wang,
2005), so for the experiments in this article we instead adopt the statisti-
cal technique for discovering same-language synonymy that we first used in
(Wang and Oard, 2006).

Previous work on word sense disambiguation suggests that translation
usage can provide a useful basis for identifying terms with similar meaning
(Resnik and Yarowsky, 2000; Xu et al., 2002). The key idea is that if term
f in language F can translate to a term ei in language E, which can further
back-translate to some term fj in language F , then fj might be a synonym
of f . Furthermore, the more terms ei exist as bridges between f and fj, the
more confidence we should have that fj is a synonym of f . Formalizing this
notion:

p(fj ∈ sf ) ≈
n∑

i=1

p(fj|ei)p(ei|f) (9)

where p(fj ∈ sf ) is the probability of fj being a synonym of f (i.e., in a
synset sf of word f), p(ei|f) is obtained from a statistical translation model
from Language F to Language E, and p(fj|ei) is obtained from a statistical
translation model from Language E to Language F . Probability values gen-
erated in this way are usually sharply skewed, with only translations that
are strongly attested in both directions retaining much probability mass, so
any relatively small threshold on the result of Equation 9 would suffice to
suppress unlikely synonyms. We somewhat arbitrarily chose a threshold of
0.1 and have used that value consistently for the experiments reported in this
article (and in our previous experiments reported in (Wang, 2005; Wang and
Oard, 2006)). Candidate synonyms with a normalized probability larger than
0.1 are therefore retained and, along with f , form synset sf . The same term
can appear in multiple synsets with this method; that fact has consequences
for meaning matching, as we describe below.

As an example, applying Equation 9 using the statistical translation prob-
abilities described later in Section 4.2.1, we automatically constructed five
synsets that contain the English word “rescue”: (holzmann, rescue), (fund,
intervention, ltcm, rescue, hedge), (saving, uses, saved, rescue), (rafts, res-
cue), and (saving, saved, rescue, salvage). As can be seen, many of these
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Figure 2: Two methods of conflating multiple translations into synsets,
fi (i = 1, 2, 3, 4): translations of term e, Sj (j = 1, 2, 3): synsets.

terms are often not actually synonyms in the usual sense, but they do cap-
ture useful relationships (e.g., the Holzmann construction company was fi-
nancially rescued, as was the hedge fund LTCM), and drawing on related
terms in information retrieval applications can often be beneficial. So al-
though we refer to what we build as “synsets,” in actuality these are simply
sets of related terms.

3.4. From Statistical Translation to Word-to-Synset Mapping

Because some translation fi of term e may appear in multiple synsets, we
need some way of deciding how p(e ↔ fi) should be allocated across synsets.
Figure 2 presents an example of two ways of doing this. Figure 2a illustrates
the effect of splitting the translation probability evenly across each synset in
which a translation appears, assuming a uniform distribution. For example,
since translation f1 appears in synsets s1 and s2 and p(e ↔ f1) = 0.4, we
add 0.4/2 = 0.2 to both p(s1|e) and p(s2|e).

Figure 2b illustrates an alternative in which each translation fi is assigned
only to the synset that results in the sharper translation probability distribu-
tion. We call this greedy aggregation. We do this by iteratively assigning each
translation to the synset that would yield the greatest aggregate probability,
as follows:

1. Compute the largest possible aggregate probability that e maps to each
sFi

, which is defined as: p(sFi
|e) =

∑
fj∈sFi

p(fj|e).
2. Rank all sif in decreasing order of that largest possible aggregate prob-

ability;

3. Select the synset sFi
with the largest aggregate probability, and remove

all of its translations fj from every other synset;

4. Repeat Steps 1–3 until each translation fj has been assigned to a synset.
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Method (b) isminimalist in the sense that it seeks to minimize the number
of synsets. Moreover, Method (b) does this by rewarding mutually reinforcing
evidence: when we have high confidence that e can properly be translated to
some synonym of fj, that might quite reasonably raise our confidence in fj
as a plausible translation. Both of these are desirable properties, so we chose
method (b) for the experiments reported in this article.

The two word-to-synset mappings in Figure 3 illustrate the effect of ap-
plying Method (b) to the corresponding pre-aggregation translation proba-
bilities. For example, on the left side of that figure each translation (into
English) of the French term “sauvetage” is assigned to a single synset, which
inherits the sum of the translation probabilities of its members.1

At this point, the most natural thing to do would be to index each synset
as a term. Doing that would add some implementation complexity, however,
since rescue and saving are together in a synset when translating the French
term “sauvetage,” but they might wind up in different synsets when translat-
ing some other French term. To avoid that complexity, for our experiments
we instead constructed ersatz word-to-word translation probabilities by dis-
tributing the full translation probability for each synset to each term in that
synset and then renormalizing it. The results are shown in the penultimate
row in Figure 3.

3.5. Variants of the Meaning Matching Model

Aggregation and bidirectionality are distinguishing characteristics of our
full meaning matching model, but restricted variants of the model are also
possible. In this section we introduce variants of the basic model, roughly in
increasing order of complexity. See Table 1 for a summary and Figure 3 for
a worked example.

• Probabilistic Structured Queries (PSQ): one of the simplest variants,
using only translation probabilities learned and normalized in the query
translation direction (Darwish and Oard, 2003).

• Probabilistic Document Translation (PDT): an equally simple variant,
using only translation probabilities learned and normalized in the doc-
ument translation direction.

1By convention, throughout this article we use a slash to separate a term or a synset
from its translation probability.

14



rescue/0.438

life/0.082

sauvetage work/0.058

saving/0.048

save/0.047

…

(saving, saved, rescue, salvage )

(life, lives, living)

(work, labor, employment)

…

(rescue, saving)/0.486

PSQ

synsets in English

word-to-synset mapping

aggregate

sauvetage/0.216

secours/0.135

rescue          sauver/0.105

cas/0.029

operation/0.028

…

(sauvetage, secours, sauver)

(situation, eviter, cas)

(fonctionnement, operation)

…

PDT

synsets in French

word-to-synset mapping

aggregate

rescue/0.987

sauvetage rescuing/0.007

saving/0.004

…

IMM

(rescue, saving)/0.486

(life, lives)/0.082

sauvetage (work)/0.058

(save)/0.047

…

rescue/0.310

saving/0.310

life/0.052

Sauvetage lives/0.052

work/0.037

save/0.030

…

APSQ

(sauvetage, secours, sauver)/0.457

rescue          (cas)/0.029

(operations)/0.028

…

word-to-synset mapping

sauvetage/0.232

secours/0.232

rescue            sauver/0.232

cas/0.015

operations/0.014

…

APDT

rescue/0.975

sauvetage saving/0.018

rescuing/0.006

…

DAMM

Figure 3: Examples showing how variants of meaning matching model are
developed.
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• Individual Meaning Matching (IMM): translation probabilities for both
directions are used without synsets by multiplying the probabilities for
PSQ and PDT. Since the result of multiplying probabilities is no longer
normalized we renormalize in the query translation direction (so that
the sum over each translation f of a query term e is 1). IMM can be
thought of as a variant of DAMM (explained below) in which each term
encodes a unique meaning.

• Aggregated Probabilistic Structured Queries (APSQ): translation prob-
abilities in the query translation direction are aggregated into synsets,
replicated, and renormalized as described above.

• Aggregated Probabilistic Document Translation (APDT): translation
probabilities in the document translation direction are aggregated into
synsets, replicated, and renormalized as described above.

• Derived Aggregated Meaning Matching (DAMM): translation probabil-
ities are used with synsets for both directions by multiplying the APSQ
and APDT probabilities and then renormalizing the result in the query
translation direction.

• Partially Aggregated Meaning Matching (PAMM): a midpoint between
IMM and DAMM, translation probabilities in both directions are used,
but with aggregation applied only to one of those directions (to the
query translation direction for PAMM-F and the document translation
direction for PAMM-E). Specifically, for PAMM-F we multiply APSQ
and PDT probabilities, for PAMM-E we multiply PSQ and APDT
probabilities; in both cases we then renormalize in the query translation
direction. For simplicity, PAMM-F and PAMM-E are not shown in
Figure 3.

3.6. Renormalization

Two meaning matching techniques (PSQ and APSQ) are normalized by
construction in the query translation direction; two others (PDT and APDT)
are normalized in the document translation direction. For the others, prob-
ability mass is lost when we multiply and we therefore need to choose a
renormalization direction. As specified above, we consistently choose the
query translation direction. The “right” choice is, however, far from clear.
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Query Doc Query Doc
Variant trans trans lang lang
acronym probs probs synsets synsets p(e ↔ f)

PSQ
√

= p(f |e)
PDT

√
= p(e|f)

IMM
√ √

∝ p(f |e)p(e|f)
APSQ

√ √
∝ p(sf |e)

APDT
√ √

∝ p(se|f)
DAMM

√ √ √ √
∝ p(sf |e)p(se|f)*

PAMM-E
√ √ √

∝ p(f |e)p(se|f)
PAMM-F

√ √ √
∝ p(sf |e)p(e|f)

Table 1: Meaning matching variants. D: Derived, P: Partial, A:
Aggregated, MM: Meaning Matching; PSQ: Probabilistic Struc-
tured Queries; PDT: Probabilistic Document Translation.

* Because we normalize each synonym set and then the product,
the proportionality symbols in DAMM and PAMM are useful
as a shorthand, but not strictly correct.

The problem arises because what we call Document Frequency (DF ) is re-
ally a fact about a query term (helping us to weight that term appropriately
with respect to other terms in the same query), while Term Frequency (TF )
is a fact about a term in a document. This creates some tension, with the
query translation direction seeming to be most appropriate for using DF
evidence to weight the relative specificity of query terms and the document
translation direction seeming to be most appropriate for estimating TF in
the query language from the observed TF ’s in the document language.

To see why this is so, consider first the DF . The question we want to
ask is how many documents we believe each query term (effectively) occurs
in. For any one query term, that answer will depend on which translation(s)
we believe to be appropriate. If query term e can be translated to document
language terms f1 or f2 with equal probability (0.5 each), then it would be
reasonable to estimate the DF of e as the expectation over that distribution
of the DF of f1 and the DF of f2. This is achieved by normalizing so that∑

fi
p(fi|e) = 1 and then computing DF (e) =

∑
fi
p(fi|e)DF (fi). Normaliz-

ing in the other direction would make less sense, since it could result in DF
estimates that exceed the number of documents in the collection.

17



Now consider instead the TF calculation. The question we want to ask
in this case is how many times a query term (effectively) occurred in each
document. If we find term f in some document, and if f can be translated
as either e1 or e2 with equal probability, and if our query term is e1, then
in the absence of any other evidence the best we can reasonably do is to
ascribe half the occurrences of f to e1. This is achieved by normalizing so
that

∑
fi
p(e|fi) = 1 and then computing TF (e, dk) =

∑
fi
p(e|fi)TF (fi, dk).

Normalizing in the other direction would make less sense, since in extreme
cases that could result in TF estimates for different query terms that sum
to more terms than are actually present in the document.

Our early experience with mismanaging DF effects (Oard and Wang,
1999) and the success of the DF handling in Pirkola’s structured queries
(Pirkola, 1998) have led us to favor reasonable DF calculations when forced
to choose. When probability mass is lost (as it is in IMM, DAMM, PAMM-
E, and PAMM-F), we therefore normalize so that

∑
fi
p(fi|e) = 1 (i.e., in

the query translation direction). This choice maximizes the comparability
between those techniques and PSQ and APSQ, which are normalized in that
same direction by construction. We do, however, still gain some insight into
the other normalization direction from our PDT and APDT experiments (see
Section 4 below).

4. Experiments

In our earlier conference paper (Wang and Oard, 2006), we reported on
two sets of experiments, one using English queries and French news text, and
the second using English queries and Chinese news text. A third set of exper-
iments, again with English queries and Chinese news text, was reported in
(Wang, 2005). Table 2 shows the test collection statistics and the best Mean
Average Precision (MAP) obtained in those experiments for each Meaning
Matching (MM) variant. In each experiment, we swept a CDF threshold to
find the peak MAP (usually at a CDF of 0.9 or 0.99).

Several conclusions are evident from these results. First, at the peak
CDF threshold DAMM is clearly a good choice, sometimes equaled but never
bettered. Second, PSQ and APSQ are at the other end of the spectrum,
always statistically significantly below DAMM. The results for IMM, PDT
and APDT are more equivocal, with each doing better than the other two in
one of the three cases. PAMM-E and PAMM-F turned out to be statistically
indistinguishable from DAMM, but perhaps not worthy of as much attention
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Collection CLEF-(01-03) TREC-5&6 TREC-9
Queries English English English
Documents French news Chinese news Chinese news
Topics 151 54 25
Documents 87,191 164,789 126,937

MAP % MAP % MAP % MAP % MAP % MAP %
of DAMM of Mono of DAMM of Mono of DAMM of Mono

DAMM - - 100.3% - - 97.8% - - 128.2%
PAMM-F 99.7% 100% 100% 97.8% 96.2% 123.3%
PAMM-E 99.7% 100% 94.9% 92.3% 91.4% 117.1%
IMM 97.2% 97.8% 92.1% 90.1% 87.9% 112.7%
PDT 96.3% 96.9% 89.9% 87.9% 98.1% 125.7%
APDT 92.5% 92.7% 98.7% 96.6% 88.5% 113.5%
PSQ 94.6% 94.8% 83.7% 82.0% 90.4% 115.9%
APSQ 83.2% 83.4% 56.6% 55.4% 49.7% 63.7%

Table 2: Peak retrieval effectiveness for meaning matching variants in three
previous experiments (“Mono” is the monolingual baseline, bold indicates a
statistically significant difference.)

since they occupy a middle ground between IMM and DAMM both in the
way they are constructed and (to the extent that the insignificant differences
are nevertheless informative) numerically in the results as well.

More broadly, we can conclude that there is clear evidence that bidi-
rectional translation is generally helpful (comparing DAMM to APDT and
APSQ, comparing PAMM-F to APDT and PSQ, comparing PAMM-E to
APSQ and PDT, and comparing IMM to PSQ and PDT), but not always
(PDT yields better MAP than IMM one time out of three, for example). We
can also conclude that aggregation results in additional improvement when
bidirectional translation is used (comparing DAMM, PAMM-E and PAMM-F
to IMM), but that the same effect is not present with unidirectional trans-
lation (with APDT below PDT in two cases out of three, and APSQ always
below PSQ).

Notably, the three collections on which these experiments were run are
relatively small, and all include only news. In this section we therefore ex-
tend our earlier work in two important ways. We first present a new set of
experiments with a substantially larger test collection than we have used to
date. That is followed by another new set of experiments for two content
types other than news, using French queries to search English conversational
speech or to search English metadata that was manually associated with that
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speech. Finally, we look across the results that we have obtained to date to
identify commonalities (which help characterize the strengths and weaknesses
of our meaning matching model) and differences (which help characterize de-
pendencies on the nature of specific test collections).

4.1. New Chinese Experiments

CLIR results from our previous Chinese experiments in (Wang (2005);
Wang and Oard (2006)) were quite good, with DAMM achieving 98% and
128% of monolingual MAP (see Table 2). Many CLIR settings are more
challenging, however, so we chose for our third set of English-Chinese exper-
iments a substantially larger English-Chinese test collection from NTCIR-5,
for which the best NTCIR-5 system had achieved only 62% of monolingual
MAP (Kishida et al., 2005).

4.1.1. Training Statistical Translation Models

For comparability, we re-used the statistical translation models that we
had built for our previous experiments with the TREC-5&6 and TREC-9
CLIR collections (Wang, 2005; Wang and Oard, 2006). To briefly recap, we
used what was at the time (in 2005) the word alignments from which others
in our group were at the time building state-of-the-art hierarchical phrase-
based models for statistical machine translation (Chiang et al., 2005). The
models were trained using the GIZA++ toolkit (Och and Ney, 2000)2 on
a sentence-aligned English-Chinese parallel corpus that consisted of corpora
from multiple sources, including the Foreign Broadcast Information Service
(FBIS), Hong Kong News, Hong Kong Laws, the United Nations, and Sino-
rama. All were written using simplified Chinese characters. A modified
version of the Linguistic Data Consortium (LDC) Chinese segmenter was
used to segment the Chinese side of the corpus. After removing implausi-
ble sentence alignments by eliminating sentence pairs that had a token ratio
either smaller than 0.2 or larger than 5, we used the remaining 1,583,807
English-Chinese sentence pairs for MT training. Statistical translation mod-
els were built in each direction with 10 IBM Model 1 iterations and 5 HMM
iterations. A CDF threshold of 0.99 was applied to the model for each di-
rection before they were used to derive the eight meaning matching variants
described in Section 3.

2http://www-i6.informatik.rwth-aachen.de/Colleagues/och/software/GIZA++.html
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4.1.2. Preprocessing the Test Collection

The NTCIR-5 English-to-Chinese CLIR test collection (formally, CIRB040r),
contains 901,446 documents from United Daily News, United Express, Ming
Hseng News, and Economic Daily News. All of the documents were writ-
ten using traditional Chinese characters. Relevance judgments for total of
50 topics are available. These 50 topics were originally authored in Chinese
(using traditional characters), Korean or Japanese (18, 18 and 14 topics, re-
spectively) and then manually translated into English, and then translated
from English into each of the two other languages. For our study, the English
version of each topic was used as a basis for forming the corresponding CLIR
query; the Chinese version was used as a basis for forming the corresponding
monolingual query. Specifically, we used the TITLE field from each topic to
form its query. Four degrees of relevance are available in this test collection.
We treated “highly relevant” and “relevant” as relevant, and “partially rele-
vant” and “irrelevant” as not relevant; in NTCIR this choice is called rigid
relevance.

With our translation models set up for simplified Chinese characters and
the documents and queries written using traditional Chinese characters, some
approach to character conversion was required. We elected to leave the
queries and documents in traditional characters and to convert the trans-
lation lexicons (i.e., the Chinese sides of the indexes into the two translation
probability matrices) from simplified Chinese characters to traditional Chi-
nese characters. Because the LDC segmenter is lexicon driven and can only
generate words in its lexicon, it suffices for our purposes to convert the LDC
segmenter’s lexicon from simplified to traditional characters. We used an on-
line character conversion tool3 to perform that conversion. As a side effect,
this yielded a one-to-one character conversion table, which we then used to
convert each character in the Chinese indexes to our two translation matri-
ces. Of course, in reality a simplified Chinese character might be mapped to
different traditional characters in different contexts, but (as is common) the
conversion software that we used is not context-sensitive. As a result, this
character mapping process is lossy in the sense that it might introduce some
infelicitous mismatches. Spot checks indicated the results to be generally
reasonable in our opinion, however.

For document processing, we first converted all documents from BIG5

3http://www.mandarintools.com/zhcode.html
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(their original encoding) to UTF8 (which we used consistently when pro-
cessing Chinese). We then ran our modified LDC segmenter to identify the
terms to be indexed. The TITLE field of each topic was first converted to
UTF8 and then segmented in the same way. The retrieval system used for
our experiments, the Perl Search Engine (PSE), is a local Perl implemen-
tation of the Okapi BM25 ranking function (Robertson and Sparck-Jones,
1997) with provisions for flexible CLIR experiments in a meaning matching
framework. For the Okapi parameter settings, we used k1 = 1.2, b = 0.75,
and k3 = 7, as is common. To guard against incorrect character handling for
multi-byte characters by PSE, we rendered each segmented Chinese word (in
the documents, in the index to the translation probability tables, and in the
queries) as a space-delimited hexadecimal token using ASCII characters.

4.1.3. Retrieval Effectiveness Results

To establish a monolingual baseline for comparison, we first used TITLE
queries built from the Chinese topics to perform a monolingual search. The
MAP for our monolingual baseline was 0.3077 (which compares favorably
to the median MAP for title queries with Chinese documents at NTCIR-
5, 0.3069, but which is well below the maximum reported MAP of 0.5047,
obtained using overlapping character n-grams rather than word segmenta-
tion). We then performed CLIR using each MM variant, sweeping a CDF
threshold from 0 to 0.9 in steps of 0.1 and then further incrementing the
threshold to 0.99 and (for variants for which MAP values did not decrease
by a CDF of 0.99) to 0.999. A CDF threshold of 0 selects only the most
probable translation, whereas a CDF threshold of 1 would select all possible
translations.

Figure 4 shows the MAP values relative to the monolingual baseline for
each MM variant at a set of CDF thresholds selected between 0 and 1. The
peak MAP values are between 50% and 73% of the monolingual baseline
for all MM variants; all are statistically significantly below the monolingual
baseline (by a Wilcoxon signed rank test for paired samples at p < 0.05). For
the most part the eight results are statistically indistinguishable, although
APSQ is statistically significantly below PDT, DAMM, APDT and PAMM-
F at each variant’s peak MAP. For comparison, the best official English-to-
Chinese CLIR runs under comparable conditions achieved 62% of the same
team’s monolingual baseline (Kishida et al., 2005; Kwok et al., 2005). All
four bidirectional MM variants (DAMM, PAMM-E, PAMM-F, and IMM)
achieved their peak MAP at a CDF of 0.99, consistent with the optimal
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Figure 4: MAP fraction of monolingual baseline, NTCIR-5 English-Chinese
collection.

CDF threshold learned in our earlier experiments (Wang, 2005; Wang and
Oard, 2006).

Overall, adding aggregation on the document-language (Chinese) side to
bidirectional translation seems to help, as indicated by the substantial in-
crease in peak MAP from IMM to PAMM-F and from PAMM-E to DAMM.
By contrast, adding aggregation on the query-language (English) side to bidi-
rectional translation did not help, as shown by the decrease of the best MAP
from IMM to PAMM-E and from PAMM-F to DAMM. Comparing PDT with
APDT and PSQ with APSQ indicates that applying aggregation with unidi-
rectional translation hurts CLIR effectiveness (at peak thresholds), which is
consistent with our previous results on other collections. Surprisingly, PDT
yielded substantially (nearly 10%) better MAP than DAMM (although the
difference is not statistically significant). As explained below, this seems to
be largely due to the fact that PDT does better at retaining some correct
(but rare) translations of some important English terms.

4.1.4. Retrieval Efficiency Results

One fact about CLIR that is not remarked on as often as it should be
is that increasing the number of translations for a term adversely affects ef-
ficiency. If translation is performed at indexing time, the number of disk
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(b) Sweeping a PMF threshold.
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Figure 5: MAP fraction of monolingual baseline by the average number of
translations used per query term, NTCIR English-Chinese collection.
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operations (which dominates the indexing cost) rises with the number of
unique terms that must be indexed (Oard and Ertunc, 2002). If translation
is instead performed at query time, then the number of disk operations rises
with the number of unique terms for which the postings file must be retrieved.
Moreover, when some translations are common (i.e., frequently used) terms
in the document collection, the postings files can become quite large. As a
result, builders of operational systems must balance considerations of effec-
tiveness and efficiency.4

Figure 5 shows the effectiveness (vertical axis) vs. efficiency (horizontal
axis) tradeoff for four MM variants and three ways of choosing how many
translations to include. Figure 5a was created from the same data as Figure 4,
sweeping a CDF threshold, but in this case plotting the resulting average
number of translations (over all query terms, over all 50 topics) rather than
the threshold value. Results for FAMM-F and FAMM-E (not shown) are
similar to those for IMM; APSQ and APDT are not included because each
yields lower effectiveness than its unaggregated counterpart (PSQ and PDT,
respectively).

Three points are immediately apparent from inspection of the figure.
First, PSQ seems to be a good choice when only the single most likely
translation of each query term is selected (i.e., at a CDF threshold of 0).
Second, by the time we get to a CDF threshold that yields an average of
three translations DAMM becomes the better choice. This comports well
with our intuition, since we would expect that synonymy might initially ad-
versely impact precision, but that our greedy aggregation method’s ability to
leverage reinforcement could give it a recall advantage as additional transla-
tions are added. Third, although PDT does eventually achieve better MAP
than DAMM, the consequences for efficiency are very substantial, with PDT
first yielding better MAP than DAMM somewhere beyond an average of 40
translations per query term (and, not shown, peaking at an average of 100
translations per query term).

One notable aspect of the PDT results is that, unlike the other cases,
the PDT results begin at an average of 8 translations per query term. For
DAMM, IMM and PSQ, a CDF threshold of 0 selects only the one most likely

4The time required to initially learn translation models from parallel text is also an
important efficiency issue, but that cost is independent of the number of terms that require
translation.
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Figure 6: Number of Chinese translations for each English query term, PDT
with the most probable translation (at a CDF threshold of 0), NTCIR-5
collection.

translation for each query term. For PDT, by contrast, a CDF threshold of
0 selects only the most likely translation for each document term. Because
of the relative lack of morphological variation in Chinese, and because our
Chinese segmentation cannot generate words that are outside its lexicon, it
turns out that the English side of our parallel corpus has roughly twice as
many unique terms as the Chinese side. It must, therefore, be the case that
half of all English terms have no Chinese translation when we run PDT with
a CDF threshold of zero. This turns out not to be the case for query terms,
however. As Figure 6 illustrates, 72 of the 130 English query terms have
8 or more Chinese translations for PDT when only the most likely English
translation of each Chinese document term is selected. The most extreme
of these is the term “time” in the query “time warner american online aol
merger impact”, which has 67 different Chinese translations with PDT at
a CDF threshold of 0. Of course, PDT yield no Chinese translations at
all with that threshold for 35 English terms across the 50 queries, notably
including “warner”. Thus we are searching for “time warner”, finding 75
Chinese translations for “time” (many of which have a plausible relation to
some meaning of “time”) and nothing at all for “warner”. Normalizing in
the query translation direction (as is the case for PSQ, IMM and DAMM)
avoids both problems, and thus is the better choice when seeking to optimize
retrieval effectiveness without using very many translations.

Figure 5b shows comparative results for sweeping a PMF threshold. As
with the CDF threshold, PSQ is a good choice when 1 translation per query
term is desired, DAMM is the better choice by 3 translations per query term
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(peaking around 5), and PDT becomes better somewhere much further out
(in this case, somewhere after 20, peaking at an average of 57 translations
per query term). Notably, PDT exhibits a markedly better effectiveness-
efficiency tradeoff with a PMF threshold than with a CDF threshold (PSQ
shows the opposite effect; IMM and DAMM are for the most part unaffected).

As Figure 5c shows, DAMM, IMM and PSQ are adversely affected when
a fixed top-n threshold is applied to the number of translations, both because
of lower peaks (than achieved by the same technique with a CDF threshold)
and because of sharper peaks (thus making actual results in operational
settings more sensitive to parameter tuning). PDT, by contrast, does about
as well with a top-n threshold as with a PMF threshold (rising about as
rapidly to peak at 73% of monolingual MAP, compared with 75% for a PMF
threshold), and using of a constant number of translations may have some
modest benefits for storage management.

It is important to recognize that the differences we are seeing here are
not statistically significant, so it is the broader trends on which we must
focus. From these results we can reasonably conclude that CDF and PMF
thresholds are both good choices over a broad range of effectiveness-efficiency
tradeoffs, and that a PMF or a top-n threshold may be a reasonable choice
if optimizing effectiveness regardless of the computational cost is the goal.
This comports well with our intuition that the information provided by the
probability distributions can provide a useful degree of query-specific tun-
ing when the choice involves relatively common events, but that empirical
statistics for uncommon events (which is what we must work with when the
number of translations becomes very large) are generally not as reliable.

4.1.5. Query-Specific Analysis

Taking the mean of the AP for the 50 queries in our test collection is
useful when seeking to characterize expected retrieval effectiveness for the
as-yet-unseen 51st query that what we really care about, but as we saw with
“time warner” when we are seeking to understand why one technique works
better than another it can also be useful to look at what happens in specific
cases. For the analysis in this section we chose the run with the peak MAP
(obtained by sweeping a CDF threshold) for each of two techniques, which
we generically refer to as Run A and Run B. We remove any topics for which
neither Run A nor Run B achieved an AP of 0.2 or better (in order to avoid
focusing on small differences between bad and worse), we then compute a
relative AP difference (rAPd), defined as (APA −APB)/APB on a topic-by-
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Figure 7: Queries with marked improvements, NTCIR-5 English-Chinese
collection.

topic basis, and we finally divide the topics into three groups: (1) the rAPd
is markedly better (at least +20%), (2) the rAPd is markedly worse (at least
-20%), and the remainder (which we normally ignore) in which the AP is
little changed.

As Figure 7a shows, there were 10 topics for which DAMM was markedly
better than PSQ and 5 topics (not shown) for which DAMM was markedly
worse. Table 3 shows query terms from several queries that (in our opinion)
have substantial probability mass assigned to incorrect translations (for space
reasons, translations with very low probabilities are not shown). As expected,
DAMM (the upper row of translations for each term) often produces sharper
distributions that emphasize better translations. Of course, a translation
need not be correct to be useful for CLIR, and several of the “translations”
shown in Table 3a are simply words that co-occur frequently with correct
translations. Nonetheless, many of the additional translations to which PSQ
(the lower row) assigns substantial probability mass are both incorrect and
(in our opinion) unlikely to be helpful. We have indicated those that we feel
could be useful using bold, and those that we expect would adversely affect
retrieval effectiveness using italics.

For three of the five cases in which DAMM was markedly below PSQ
(Queries 23, 47, and 7 in Table 3b), DAMM seems to be overtuned to the
domain of the parallel text collection. For example, it may be the case that
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Query 31: fine dust particles heart disease 

particles 
粒子粒子粒子粒子/0.5207 微粒微粒微粒微粒/0.4015 顆粒顆粒顆粒顆粒/0.0725 

粒子粒子粒子粒子/0.1669 顆粒顆粒顆粒顆粒/0.0557 微粒微粒微粒微粒/0.0524 粒粒粒粒/0.0453 物質/0.0438 … 

heart 
心臟病心臟病心臟病心臟病/0.3749 心臟心臟心臟心臟/0.2465 心中心中心中心中/0.231 心心心心/0.0834 心裡心裡心裡心裡/0.0592 

心臟病心臟病心臟病心臟病/0.2887 患/0.2642 有/0.246 
Query 29: alternative energy air pollution electricity 

alternative 
替代替代替代替代/0.5539 另/0.1813 無如/0.0675其他/0.0461不得已/0.0279 … 

另/0.2468 類/0.1388 其他/0.122 選擇/0.0621替代替代替代替代/0.039 … 
Query 10: anthrax bacteria war terrorist attack 

anthrax 
疽/0.5947 炭疽病炭疽病炭疽病炭疽病/0.4053  

炭/0.1539 疽/0.1532 炭疽病炭疽病炭疽病炭疽病/0.1251 菌/0.0866 熱/0.0577… 

terrorist 
恐怖恐怖恐怖恐怖/0.6445 恐/0.3502 

恐怖恐怖恐怖恐怖/0.5684 分子/0.1015 份子/0.1005 
Query 1: time warner american online aol merger impact 

online 
網絡網絡網絡網絡/0.6654 網網網網/0.3338  

網網網網/0.416 上/0.3703 … 
Query 19: supersonic airliner concord airplane crash 

concord 
和諧和諧和諧和諧/0.5097 和睦/0.218 康/0.2165 式/0.0268 苑/0.0118 … 

式/0.2127 康/0.1788 和/0.1669 和諧和諧和諧和諧/0.065苑/0.0236 屋/0.0219 … 
Query 15: ep surveillance aircraft fighter aircraft collision 

surveillance 
偵察機偵察機偵察機偵察機/0.2279 監測/0.2138 監察/0.1965 監管/0.171 監視/0.1373 … 

監察/0.3225 監視/0.1336 偵察機偵察機偵察機偵察機/0.1034 偵察偵察偵察偵察/0.0828 監/0.0415 … 

collision 
事件/0.2649 撞撞撞撞/0.2331 相撞相撞相撞相撞/0.1837 軍機/0.1479 碰撞碰撞碰撞碰撞/0.104 … 

撞撞撞撞/0.301 機/0.2801 事件/0.1118 相撞相撞相撞相撞/0.0638 
 

(a) DAMM is better than PSQ.

Query 23: space station mir disposal storage waste 

mir 
中大/0.4837 退休/0.3224 壽命/0.1939 
"/0.1819 號/0.1727 和平和平和平和平/0.1445 退休/0.0304 補償/0.0279 … 

Query 47: korean general election 2000 han nara party 

korean 
半島/0.1612 南韓南韓南韓南韓/0.1604 韓國韓國韓國韓國/0.1559 韓/0.1509 朝鮮朝鮮朝鮮朝鮮/0.1478 … 
朝鮮朝鮮朝鮮朝鮮/0.5192 韓國韓國韓國韓國/0.2003 … 

general 
秘書長/0.1361 總書記/0.1322 一般/0.1287 市民/0.1275 綜合/0.123 … 
一般/0.5161 總/0.1442 秘書長/0.0313 綜合/0.0294 

Query 7: wen ho lee case classified information national security  

wen 
溫/0.5455 文文文文/0.4361 家寶/0.0138 
文文文文/0.5993 溫/0.253 

 
(b) PSQ is better than DAMM

Table 3: Translations of selected query terms for DAMM (upper) and PSQ
(lower) at the optimal CDF threshold for each. Bold indicates useful (in our
opinion); italics indicate harmful (in our opinion).
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many of the sentences in the parallel text collection that contain the word
“general” are talking about attorneys general, military generals, or the U.N.
Secretary General. If so, bidirectional translation would tend to reinforce
those meanings of “general” to the detriment of the sense needed for “Korean
general election” in Query 47. In future work we might be able to mitigate
this overtuning to some extent either by using factored translation models
(e.g., incorporating part-of-speech evidence) (Koehn and Hoang, 2007) or by
using broader context in some way (e.g., with phrase translation models).

With a similar analysis (not shown), we found that PDT did markedly
better than IMM for 10 queries and markedly worse for 2 queries. Explaining
why that happened is harder in this case, however, since (at peak) PDT
queries typically use an enormous number of translations. Examining only
the most likely translations for each query term in the 10 queries for which
PDT achieved a marked improvement, we found just two English query terms
for which PDT assigned a much higher probability to a good translation than
IMM did: “operation” in Query 36 (“remote operation robot”), and “class”
in Query 24 (“economy class syndrome flight”). This paucity of evidence
suggests that other as-yet-uncharacterized effects must be responsible for
the majority of the benefit that we see from PDT at high CDF thresholds.

Figure 7b shows the per-topic AP for the 22 queries in which the mono-
lingual condition (i.e., Chinese queries) yielded a markedly higher AP than
DAMM (there were also 8 cases in which DAMM was markedly better than
the monolingual baseline). In aggregate, the MAP over those 22 queries is
only 34% of the monolingual baseline, so those 22 queries account for almost
all of the observed MAP difference between the monolingual baseline and
DAMM over the full 50-query set. For each of those 22 queries we inspected
the DAMM translations for each query term and identified the following
factors that in our opinion had likely degraded CLIR effectiveness:

• Incompatible tokenization. Alternative ways of tokenizing text are some-
times plausible, and this effect is particularly notable for languages
such as Chinese in which word boundaries are not marked when writ-
ing. For example, both “Kim Dae Jun” and “Kim Jong Il” in Query 3
correspond to three-character person names on the Chinese side of the
parallel corpus. These names were both correctly segmented as three-
character terms. On the English side, each space-delimited word was
tokenized, also correctly, resulting in three terms in each case (one for
each token in the name). This created some problems because “Jun” is
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Query 35: capital punishment survey data 

capital 
資本/0.1673 基本/0.1671 資產/0.1636 資金/0.1508 首都/0.1282 外資/0.121 
資/0.0846 經常/0.0059 投資/0.0033  

Query 11: ichiro rookie major league 
ichiro 郎/1  
Query 12: jennifer capriati tennis 
capriati 莉/0.7869 休止/0.1574 樂於/0.0542  
Query 25: tiger woods sports star 
woods 林子/0.3539 樹叢/0.297 樹林/0.2961 茲/0.025 森林/0.0193  
Query 36: remote operation robot 

operation 
作戰/0.2629 經營/0.2208 行動/0.2163 運作/0.2001 運行/0.0294 操作
/0.0245 營/0.0185 運/0.0139 開刀/0.0019 投入/0.0019  

Query 24: economy class syndrome flight 

class 
級/0.1937 階級/0.1882 課程/0.1787 中產階級/0.0889 班/0.0875  
上課/0.0704 甲級/0.0617 課/0.0545 一流/0.0429 類別/0.0065 階層/0.0043 
教室/0.0038 同學/0.0034 課堂/0.003 班上/0.0021 工人/0.0016  

Query 5: g8 okinawa summit 
g8 工業國/0.8295 g/0.1547 丨/0.0107  

 

Table 4: Examples of the domain difference effect with DAMM.

a common abbreviation in English that was aligned with the Chinese
term for the month “June” more often than with the Chinese term for
“Kim Dae Jun” and because “Il” was more often aligned with the Chi-
nese term for the name “Kim Il Sung” (the father of Kim Jong Il). The
resulting translation probability distributions were clearly suboptimal
for this query. Similar problems arose in Queries 7, 11, 14, and 38.

• Differing transliteration conventions. Terms that are transliterated dif-
ferently in the collection and in the parallel text can cause problems.
For this Chinese test collection, all four cases involved proper names:
“Kursk,” “Greenspan,” “Dennis” and “Tito” in Queries 6, 42, 30 and
30, respectively.

• English vocabulary gaps : Some words not covered by the lexicon be-
cause they are not present sufficiently often in the parallel corpus. In all
three cases these were proper names “Bubka,” “Maru,” and “iloveyou”
(the name of a virus) in Queries 23, 8, and 37, respectively. The ef-
fect on these queries was rather severe (all are on the left side of the
Figure 7b, which is ordered by decreasing relative advantage of mono-
lingual).
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• Domain differences. All of the other English query terms have one or
more translations, but in some cases one or more appropriate Chinese
translations of an English query term are simply not common enough
in the parallel text to result in the right translations receiving much
probability mass. Table 4 shows the queries containing these words
and their translations. In our opinion, very few of the translations that
are receiving probability mass from DAMM in these cases would be
helpful.

Nearly half (10 of 22) of the queries in Figure 7b contain names of persons,
and most of the rest (7 of 22) contain proper names of objects or organiza-
tions. Together, these queries that were difficult for DAMM account for most
of the queries in the 50-query NTCIR-5 Chinese test collection that contain
proper names (10 of 13 person names, 17 of 24 total proper names). For
comparison, only 4 of of the 25 topics in the TREC-9 Chinese collection con-
tain organization or location names, and no person’s name appears anywhere
in those 25 topics. Similarly, the 54 topics of the TREC-5&6 Chinese test
collection include only 2 topics that contain organization or location names,
and none that contains person names. We often think of the purpose of repli-
cating experiments on a different test collection as seeing what will happen
with a new set of documents. As these statistics clearly indicate, however,
seeing what happens with queries that are constructed in a different way can
be equally important.

We can also use Figure 7b to see whether topic-specific CDF thresholds
might yield further improvement. Although it is not clear how topic-specific
thresholds would best be chosen, it is straightforward to bound the potential
improvement by using post-hoc optimal topic-specific thresholds as an oracle.
Focusing on the same 22 queries on which the monolingual baseline obtained
a markedly higher AP than DAMM, our oracle found that higher AP could
be obtained at some CDF threshold below 0.99 for 19 of those 22 queries and
that a CDF threshold above 0.99 was optimal for the remaining 3. In other
words, although a CDF threshold of 0.99 was optimal when averaging over all
50 queries, it was not optimal for any of the 22 queries that we have identified
as having the greatest potential for improvement! As the few middle (gray)
bars in Figure 7b indicate, the magnitude of the potential gain in AP is
in most cases very small. For queries 7 and 41 the relative improvement in
DAMM is quite large, however (even slightly exceeding monolingual MAP for
topic 41). On average over all 50 topics, AP from DAMM rises from 66% of
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monolingual AP with a constant (0.99) threshold to 72% of monolingual AP
with oracle topic-specific thresholds. From this we conclude that although
CDF (and PMF) thresholds provide some degree of topic-specific behavior,
further work on topic-tuned thresholds might be worthwhile.

Turning our attention to the 8 queries for which DAMM achieved a
markedly higher AP than the monolingual condition (not shown) we see that
as we would expect the right translations are being used. Specifically, for
every English term in all 8 of those queries the corresponding term from the
Chinese query appeared among the DAMM translations, often with the high-
est translation probability. The additional benefit comes from the frequent
presence of synonyms among the Chinese translations that (in our opinion)
would provide a useful query expansion effect. In some sense this makes
the MAP obtained using unexpanded monolingual queries an artificially low
point of comparison, but we prefer an unexpanded monolingual reference be-
cause monolingual query expansion would introduce an additional source of
variance (potentially harming some queries and helping others).

We expected that our decision in these experiments to threshold the two
translation probability tables at a CDF of 0.99 before the DAMM compu-
tation would result in less sensitivity to specific threshold choices near the
optimal value of 0.99. To check this, we looked across all 50 queries, finding
only 12 that achieved their maximum AP at a CDF threshold at or above
0.99. Omitting 3 that yielded very low DAMM AP (peaking at 0.0003) and
1 that yielded very low monolingual AP (0.0002), Figure 8 shows the ratio
of DAMM AP to monolingual AP for the remaining 8 queries. Except for
Query 41, the AP of these 8 queries is generally quite stable above a CDF
threshold of 0.9. We therefore would not expect to see further improvements
from exploring the region between 0.9 and 1.0 with greater granularity.

These English-Chinese experiments confirm what we have seen before:
DAMM is generally a good choice. Importantly, we have now seen that
on a larger test collection (although we should note that the NTCIR-5 col-
lection that we used is still far smaller than the Web-scale test collections
that are now commonly used in monolingual experiments). Among our new
contributions are detailed analysis of effectiveness-efficiency tradeoffs, better
understanding of why DAMM, IMM, PSQ and PDF behave as they do, and
obtaining some indication that some further gain might be obtained from
query-specific CDF thresholds. Along the way we have seen that the same
CDF threshold (0.99) is optimal across for DAMM across several test collec-
tions, at least in part because initial pruning of the raw translation probabil-
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Figure 8: Queries with peak DAMM AP at CDF threshold of 0.99 or greater,
NTCIR-5 English-Chinese collection.

ity tables yields stable performance for individual topics at higher threshold
values. Our analysis also illuminates some issues that are of broader inter-
est in CLIR research generally, most notably consequential differences in the
prevalence of named entities among the queries when the two languages use
different character sets.

4.2. New French Experiments

Our Chinese experiments have told us what happens with larger test col-
lections, but we don’t yet know what we will see when we look beyond news
to other types of content. In this section we therefore report on another
new set of experiments, this time with the Cross-language Speech Retrieval
(CL-SR) collection of the 2006 Cross-language Evaluation Forum (CLEF).
Queries written in French were used to retrieve manually partitioned seg-
ments of English interviews. The collection includes two parallel represen-
tations of the same content, one which we call the “manual” condition that
was prepared entirely by subject matter experts, and the other that we call
“automatic” condition that was produced with an Automatic Speech Recog-
nition (ASR) system that had been tuned (on held-out data) to optimize
recognition accuracy for the accented, elderly, domain-specific speech con-
tent of the interviews (which were conducted with survivors of, witnesses to,
or rescuers during the Holocaust).

34



4.2.1. Training Statistical Translation Models

For comparability with our earlier work, we used the same models for
the French-English language pair as in (Wang and Oard, 2006), although
in this case the query and document languages are reversed (in our earlier
experiment, we had used English queries and French documents). Recap-
ping briefly, we derived word-to-word translation models from the European
Parliament Proceedings Parallel Corpus, known as Europarl Corpus (Koehn,
2005),5 using the freely available GIZA++ toolkit. Before word alignment
we stripped accents from the French documents and we filtered implausi-
ble sentence alignments by eliminating sentence pairs that had a token ratio
either smaller than 0.2 or larger than 5. GIZA++ was then run twice on
the remaining 672,247 sentence pairs, first with English as the source lan-
guage and subsequently with French as the source language. When training
translation models, we started with five Hidden Markov Model (HMM) it-
erations, followed by ten IBM Model 1 iterations, and ended with five IBM
Model 4 iterations. The result of this process was two translation tables,
one from English words to French words and the other from French words to
English words. In contrast with our Chinese experiments, all nonzero values
produced by GIZA++ were retained in each table.

4.2.2. Test Collection

The “documents” in the CLEF 2006 CL-SR test collection correspond to
8,104 manually partitioned intervals (called “segments,” which average about
4 minutes duration) from 272 interviews that were collected and indexed by
the Survivors of the Shoah Visual History Foundation (now the University of
Southern California Shoah Foundation Institute for Visual History and Ed-
ucation) (Oard et al., 2004, 2007). Three types of metadata were created for
each segment as a part of the indexing process: the names of mentioned peo-
ple were recorded (regardless of whether the person was actually mentioned
by name), some thesaurus keywords were assigned, and a somewhat stylized
three-sentence summary was written that focused on providing “who, what,
when, where” information (and that was originally intended to be displayed
with search results to support segment-level selection). We used the terms in
these fields (formally, the NAME, MANUALKEYWORD and SUMMARY
fields of the CLEF 2006 CL-SR collection, respectively) for the document rep-

5The Europarl corpus is available at: http://www.statmt.org/europarl/.
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resentation that we call “manual” in this article. No distinction was made
between the fields for this purpose; all were tokenized in the same way, and
indexed together.

For our “automatic” representation, ASR was used to generate a (po-
tentially erroneous) one-best word transcript of what had been said in the
interview. The ASR process (with a 38% measured word error rate on held
out data) was optimized for the interviewee rather than the interviewer (by
automatically detecting and then consistently using only the interviewee’s mi-
crophone) and was trained using 200 hours of in-domain held out data along
with other other standard ASR training resources (Byrne et al., 2004). This
resulted in the text contained in the ASRTEXT2004A field of each segment
in the test collection. In an effort to automatically capture some knowledge
from the manual indexing process, these words were used as the feature set
for two k-Nearest-Neighbor (kNN) classifiers trained (using cross-validation)
to approximate human assignment of thesaurus terms. The resulting kNN
keywords were contained in the AUTOKEYWORD2004A1 field and the AU-
TOKEYWORD2004A2 field, respectively. A second ASR transcript (with a
measured word error rate of 25% on held out data) that had been trained
similarly to the first system, but using a later generation of ASR models,
was also used to create the ASRTEXT2006A1 field (although that system
was not used by the classifiers that automatically assigned thesaurus terms).
We tokenized these four fields consistently and indexed the resulting terms
together.

The Porter stemmer was used to stem the English collections and the
English side of the translation probability matrix. The 33 French evalua-
tion topics in the CLEF CL-SR 2006 test collection were created initially in
English and then translated into French by bilingual speakers. We used the
TITLE field (2-3 words) and the DESCRIPTION field (typically, one sen-
tence) together as unstructured (i.e., bag of words) queries. Binary relevance
judgments (relevant or not relevant) for segments that have previously been
judged by subject matter experts are distributed with the test collection.
The Perl Search Engine (PSE) with the same settings as in our NTCIR-5
experiments was used for retrieval.

4.2.3. Results

To facilitate cross-collection comparisons, we again report the fraction
of monolingual MAP achieved by each CLIR system (monolingual MAP is
0.0466 for the “automatic” condition and 0.2300 for the “manual” condition,
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Collection NTCIR-5 CL-SR Automatic CL-SR Manual
Queries in English French French
Documents in Chinese news French ASR French metadata
Total topics 50 33 33
Total docs. 901,446 8,104 8,104

MAP % MAP % MAP % MAP % MAP % MAP %
of DAMM of Mono of DAMM of Mono of DAMM of Mono

DAMM - - 66.2% - - 83.5% - - 75.6%
PAMM-F 101.6% 67.3% 85.9% 71.7% 94.1% 71.1%
PAMM-E 92.6% 61.3% 89.9% 74.2% 96.3% 72.7%
IMM 94.1% 62.3% 92.5% 77.3% 94.5% 71.6%
PDT 109.5% 72.5% 102.1% 85.2% 106.2% 80.1%
APDT 98.1% 65.0% 89.2% 74.5% 99.9% 75.6%
PSQ 96.3% 63.8% 85.7% 71.7% 96.0% 72.5%
APSQ 74.9% 49.6% 98.7% 82.4% 98.1% 74.1%

Table 5: The best retrieval effectiveness of meaning matching variants in new
experiments (“Mono” is the monolingual baseline, bold indicates a statisti-
cally significant difference.)

respectively).6 Table 5 shows the MAP of each MM variant at the best CDF
threshold for the “automatic” and “manual” coditions. For comparison, we
also include in the table the results reported in Section 4.1. For the automatic
condition, the MAP of these MM variants ranges between 72% and 85% of
monolingual MAP, all at a CDF threshold of 0.99. Wilcoxon signed rank tests
for paired samples (at p < 0.05) found no significant differences among these
results, and moreover found that at the peak CDF threshold each technique is
statistically indistinguishable from the monolingual baseline. For the manual
condition, the best MAP of each MM variant ranges between 71% and 80% of
monolingual MAP, all except PSQ at a CDF threshold of 0.99 (PSQ peaked
at 0.9). No statistically significant differences were found between the cross-
language results at peak, but at peak each was statistically significantly below
the monolingual baseline. The relatively small number of queries (33) may
have contributed to this failure to observe significant differences among MM
variants. Studies of text retrieval (Voorhees, 2000; Sanderson and Zobel,

6For comparison, the best reported monolingual MAP at CLEF-2006 with the same
queries and indexed fields was 0.0565 for our automatic condition and 0.2350 for our
manual condition.
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2005, e.g.) have shown that relative effectiveness comparisons become more
stable as more queries are added, and that more than 40 queries are typically
needed to reliably make relatively fine-grained comparisons.

Figure 9 shows the effectiveness-efficiency tradeoff for sweeping CDF,
PMF, and top-n thresholds, focusing again on DAMM, IMM, PDT, and
PSQ. For both the “manual” condition (Figures 9a, 9c, and 9e) and the
“automatic” condition (Figures 9b, 9d, and 9f), the PMF threshold seems
to be a good choice for DAMM, both because DAMM seems to peak at a
somewhat higher MAP and because that peak is more robust to differences
in the resulting average number of translations. A top-n threshold seems
like a good choice for PDT, which in this case starts outperforming the best
DAMM results (DAMM with a PMF threshold) at an average of around
15 translations per query term in the “manual” condition and around 45
translations per query term in the “automatic” condition, respectively. In
contrast with the pattern seen for Chinese, when only one translation is
used IMM now looks to be a better choice than PSQ for both the manual
and the automatic conditions. For Chinese, IMM had not been far below
PSQ for top-1 translation, so looking back over both sets of experiments, we
can therefore recommend IMM (or perhaps PSQ) for one-best translation,
DAMM when it is possible to use 3-5 translations, and PDT when efficiency
is not a limiting factor.

4.2.4. Query-Specific Analysis

As in our Chinese results above, we identified the topics whose peak
DAMM Average Precision (AP) in the manual condition was substantially
lower than the corresponding monolingual AP for the same topic, and then
looked for factors that might explain the difference. There were four such
topics, from which we identified the following factors:

• Normalization error: Topic 3005 (English: Death marches; Experi-
ences on the death marches conducted by the SS to evacuate the con-
centration camps as the allied armies approached. French: Les marches
de la mort; Expériences concernant ces marches de la mort conduites
par les SS afin d’évacuer les camps de concentration pour chapper aux
armées alliées qui approchaient.): According to our meaning match-
ing lexicon, the French word “marches” has only one English synonym
“markets” (with a probability of 1). Clearly this is wrong, since a better
translation would be “marches.” This error was almost certainly caused
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(a) Sweeping a CDF threshold.
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(b) Sweeping a CDF threshold.
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(c) Sweeping a PMF threshold.
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(d) Sweeping a PMF threshold.
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(e) Sweeping a top-n threshold.
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(f) Sweeping a top-n threshold.

Figure 9: MAP fraction of monolingual baseline by the average number of
translations used per query term, CL-SR French-English collection. The
three figures on the left side correspond to the “manual” condition; the three
on the right side correspond to the “automatic” condition.
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by stripping French accents before training the statistical translation
models, since the French word “marché” can properly be translated as
“market”).

• Incompatible tokenization: Topic 1325 (English: Liberators of Concen-
tration Camps; African-American Liberators of Concentration Camps.
French: Les libérateurs des Camps de Concentration; La libération des
camps de concentration par les afro-américains.): The English term
“African-American” was expressed as “afro-américans” in the French
query. After tokenization this became “afro” and “american” which
wound up in different synonym sets in English, yielding poor results
for DAMM.

• Differing transliteration conventions: Topic 3013 (English: Yeshiva
in Poland; Accounts regarding Poland’s Pre-war Yeshiva and its in-
fluence on its graduates and their descendants. French: Yéshiva en
Pologne; Récits évoquant la Yéshiva de la Pologne d’avant-guerre, ainsi
que son influence sur ses diplômés et leurs descendants.): Our mean-
ing matching lexicon mapped French word “yéshiva” to the English
word “jeshiwa” with a probability of 1, presumably because “Yeshiva”
rather than “Jeshiwa” was used by convention in the European Parlia-
ment parallel corpus from which we learned our translation model.

• English Vocabulary gap: Topic 3031 (English: Activities in US DP
camps; Religious and cultural activities and observances in the Ameri-
can DP camps, especially involving US Jewish chaplains. French: Ac-
tivités au sein des camps de déportés américains; Activités et pratiques
culturelles et religieuses dans les camps de déportés américains, plus
particuliérement, impliquant les aumôneries juives américaines.): The
French word “déportés” was (correctly) translated by DAMM to the
English stem “deport,” in part because the term “DP” does not oc-
cur on the English side of the parallel text collection. However, the
interviewers and interviewees consistently spoke of “DP camps” in this
context, and used “deport” and “departation” mostly in other con-
texts. As a result, the English query did quite well with the manually
created metadata (reliably finding the term “DP”), while the French
query yielded poor results.

That these are similar to the types of errors seen in Chinese suggests
that error patterns do vary from one test collection to another, but that the
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Collection CLEF CL-SR CL-SR Avg. TREC TREC NTCIR Avg.
(01-03) manual auto E-F (5&6) (9) (5) E-C

Queries English French French English English English
Documents French English English Chinese Chinese Chinese

news metadata ASR news news news
Topics 151 33 33 54 25 50
Documents 87,191 8,104 8,104 164,789 126,937 901,446

PDT/DAMM 96.3% 106.2% 102.1% 102% 89.9% 98.1% 109.5% 99%
PAMM-F/DAMM 99.7% 94.1% 85.9% 96% 100.0% 96.2% 101.6% 99%
APDT/DAMM 92.5% 99.9% 89.2% 94% 98.7% 88.5% 98.1% 95%
PAMM-E/DAMM 99.7% 96.3% 89.9% 95% 94.9% 91.4% 92.6% 93%
IMM/DAMM 97.2% 94.5% 92.5% 95% 92.1% 87.9% 94.1% 91%
PSQ/DAMM 94.6% 96.0% 85.7% 92% 83.7% 90.4% 96.3% 90%
APSQ/DAMM 82.3% 98.1% 98.7% 93% 56.6% 49.7% 74.9% 60%

DAMM/Mono 100.3% 75.6% 82.4% 86% 97.8% 128.2% 66.2% 97%

Table 6: Summarizing six sets of meaning matching experiments (“Mono” is
the monolingual baseline, bold indicates a statistically significant difference.)

nature of the content is (at least in this case) no greater a factor than the
nature of the queries (as we saw with the names in the NTCIR-5 Chinese test
collection) or the nature of the languages involved (e.g., as we have seen with
the differing transliterating conventions in both experiments). Moreover, as
we would expect, none of these error types are specific to meaning matching;
all are well known in CLIR research generally. From this we can conclude
that our implementations of bidirectional translation and synonymy have
performed as we would expect given the design decisions that we have made.

4.3. Comparing Six Experiments

Table 6 compares the results from the six experiments that we have con-
ducted to date, including our three previous experiments from Table 2 (Wang,
2005; Wang and Oard, 2006) and our three new experiments from Table 5.7

Each of the three experiments involving French used the same translation
models (i.e., trained in the same way on the same training data), as did each
of the three experiments involving Chinese experiments.

The rightmost column in Table 6 provides an easy way of discerning gen-
eral trends, so Table 6 is sorted by those macroaveraged values. Averaged
over the six experiments, DAMM and PDT yield quite similar results at
peak, with none of the observed differences in individual experiments being

7One other very preliminary experiment in Xu and Oard (2008) using English queries
and Hindi documents is not included in this analysis.
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statistically significant; the choice between these two techniques thus turns
more on efficiency (where DAMM has a decided advantage) than effective-
ness. Other meaning matching methods yield reasonable results on both
languages, with the exception of APSQ which does very poorly on all three
Chinese test collections. Indeed, with the exception of APSQ the average
results are strikingly similar, both across languages and across techniques.
Differences in specific cases should of course be interpreted with caution, but
the consistent pattern of improvement over a broad range of conditions (two
quite different language pairs, two types of sources (news and conversations),
six collections, and over 300 topics) gives credibility to a broad conclusion
that the choice to be made is between DAMM and PDT.

5. Conclusion

Excellent results have been reported for meaning matching in prior work
(Wang, 2005; Wang and Oard, 2006), but the evaluation framework that we
use for information retrieval experimentation relies on replication to achieve
high confidence in the results. In “batch” experiments of the type reported
in this article we always replicate across queries, but it is also important (and
far more time consuming) to replicate across collections. Indeed, our exper-
iments in this paper showed that PDT can be quite effective at peak, which
had not been apparent in our earlier work.8 The analysis of batch experi-
ments is often sharply focused on effectiveness; we have sought to balance
that with some attention to efficiency issues as well, for which the average
number of translations per query term provides a useful proxy. Finally, we
have looked in some detail at what is happening with individual queries, thus
better understanding the effects of specific design decisions, and thus which
parts of what we are seeing are fundamental to the methods we have tested
and which are incidental to the way we have implemented our experiments.

As for what we might grandly call “theory,” we have presented the deriva-
tion of meaning matching in greater detail, thus highlighting the key role of
normalization. This led to a new discussion of the tension between nor-
malizing in the document translation direction, which we see as favorable for
principled mapping of TF and normalizing in the query translation direction,
which we see as favorable for principled mapping of DF . For the experiments

8We have carefully checked and repeated our earlier experiments to confirm that we
had not inadvertently misreported PDT results earlier.
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in this paper we simply chose one direction and used it consistently (although
in some side experiments we did confirm that choosing the other direction
was not clearly better, at least in the cases we looked at). But this tension
clearly points to a need for further work, as we describe below.

Our experiments have led us to formulate some guidelines for practice as
well. The use of top-1 translation is today quite common (often implemented
by simply using Google Translate), and our results suggest that under those
conditions translating the queries is a better choice than translating the doc-
uments because that choice ensures that every query term will have an op-
portunity to influence the results. This comports well with present practice,
which (at least in experimental settings) favors query translation. When ac-
cess to the internals of the translation system is possible, our more complex
DAMM approach offers some potential to leverage translation probability ta-
bles in ways that can yield better retrieval effectiveness than one-best trans-
lation, although at the expense of somewhat greater disk activity (because
of using 3-5 times as many translations per query term). When efficiency is
not a factor, we have also now seen cases in which the probability-weighted
translation of document term counts that has been widely used with language
modeling techniques for information retrieval can yield excellent effectiveness
results. By also characterizing the implications of that approach for efficiency,
we have illuminated a tradeoff that must be considered by designers of oper-
ational systems. Future work on effectiveness-efficiency tradeoffs for specific
settings should, of course, also consider the amortized costs of constructing
the translation model.

Our analysis results may also be of broader interest to CLIR researchers.
For example, our observations on the relative predominance of named entities
in different Chinese test collections may help others to identify which test
collections are most suitable to the research questions they wish to explore.
We also saw some evidence of the domain difference effects between the par-
allel texts on which our translation models were trained and the texts in our
information retrieval test collections. Although this is a well known effect
among machine translation researchers, we believe that it is an understudied
issue in cross-language information retrieval research. Some previous studies
have demonstrated substantial effects from lexicon size on retrieval effective-
ness (McNamee et al., 2009; Demner-Fushman and Oard, 2003, e.g.), but we
are not aware of comparable studies in which the effect of parallel corpus
domain has been well characterized in CLIR experiments. There is now a
considerable amount of work underway on what is broadly called “domain
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adaptation” in which the statistics learned from corpora that are not quite
“close enough” are adjusted in some way to make them “closer”—as that
work matures, it may be possible to begin to apply the resulting techniques
in a CLIR setting (Daumé, 2007).

The most important new research question that we now need to grapple
with is how best to address normalization. The issue arises from the as-
sumption in our derivation of meaning matching that every possible shared
meaning has an equal chance of being expressed (i.e., that p(mi) in Equa-
tion 6 is a constant). In reality, of course, some meanings will be more often
expressed than others. One approach to avoiding the normalization issue
would be to find some reasonable way of estimating p(mi). Alternatively,
we might try the rather obvious expedient of simply normalizing in different
directions for TF and DF . The competing advantages of DAMM and PDT
(at least on some test collections) suggest that these could be productive
lines of inquiry.

The other place where normalization arises in our work is in our imple-
mentation of aggregation. The whole point of aggregation is to treat equiv-
alent translations equivalently, and our term-oriented normalization indeed
accomplishes that while permitting us to retain a term-oriented architecture.
But the cost of that design is some reduction in fidelity when compared to
what we actually wish to model, which is that sets of translations are (for our
purposes) interchangeable. Modeling that situation more faithfully would re-
quire an architecture in which we index synonym sets that have potentially
overlapping elements. That can be done, but at some cost in implementation
complexity that would have added complexity to the comparisons between
techniques that we have been able to make using a simpler term-oriented
model.

Although not a focus of our work in this article, one clear implication
of the meaning matching framework is an interaction between segmentation
granularity, translation ambiguity, and recall-preserving generality that has
not yet been well characterized. Modern statistical machine translations
can learn translation statistics on fixed collocations (so-called “statistical
phrases”) that result in more accurate translation (Och and Ney, 2004). In-
formation retrieval, however, requires that we optimize an objective function
that balances specificity (to enhance precision) with generality (to enhance
recall). In particular, it is well known that it is more effective to index both
phrases and their component words than it would be to index phrases alone.
Our present meaning matching framework assumes, however, that we have
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some specific tokenization process for the queries and for the documents.
Future work on integrating evidence from multiple plausible tokenizations
might be productive. The idea of bidirectional translation is also not unique
to CLIR. Machine translation researchers leverage a comparable idea (“align-
ment by agreement”), which is now available as a replacement for GIZA++
in the Berkeley Aligner (Liang et al., 2006)). Comparison of our implementa-
tions of IMM and DAMM with variants based on Berkeley alignment results
would be a logical first next step towards understanding the potential of these
alignments in CLIR applications

Of course, there are many other ways in which our work could be ex-
tended. For example, we chose not to use blind relevance feedback (Balles-
teros and Croft, 1997), not to perform context-based reweighting of trans-
lation probabilities (Gao et al., 2001, e.g.), and not to use term proximity
features (Lv and Zhai, 2009). These choices were motivated by our desire to
keep our experiment designs straightforward enough for the analysis that we
wished to perform, but in future work all of those techniques might produc-
tively be tried.

There are also many sources of evidence for synonymy that might be ex-
plored, including traditional sources such as stemming, WordNets and the-
sauri, and more recent developments such as learning term relationships from
distributional statistics in a monolingual corpus, or extracting emergent term
relationships from crowdsourced resources such as Wikipedia. In interactive
settings it might also be possible to leverage the user’s understanding of term
meaning in some way (He and Wu, 2008, e.g.). It is also worth noting that for
implementation convenience we leveraged synonymy after translation proba-
bilities had been generated, but architectures in which putative synonyms are
conflated before the translation probabilities are learned also deserve study.
Our greedy approach to conflation might also be improved upon.

Notably, we have to date relied on just one kind of evidence (term counts)
and just one way of using that evidence (Okapi BM25 term weights), but of
course real applications can and should rely on a broader range of evidence.
Indeed, experience with learning to rank for Web search has shown that
non-content evidence (e.g., associating queries and clicks, learning authority
measures from link graphs, and a bias in favor of shorter URL’s) can have
substantial effects on retrieval effectiveness. Investigating the relative con-
tribution of meaning matching in such settings should therefore command
the attention of those researchers who have access to more comprehensive
feature sets.
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Finally, the way in which we have modeled uncertainty in meaning match-
ing would seem to have a clear applicability to other cases such as speech
retrieval and retrieval of scanned documents based on Optical Character
Recognition (OCR); in both settings, uncertainty naturally arises in the
query-document matching process. The generative techniques that have been
applied to those problems to date (Olsson and Oard, 2009; Darwish and Oard,
2003, e.g.) suffer from serious efficiency issues that could likely be mitigated
by modeling uncertainty as a translation process (even when the query and
document languages are the same). Indeed, this perspective bring us full
circle. In information retrieval our goal has always been to match meanings.
CLIR evolved in its early days through a stage in which the translation and
retrieval components were seen as modules to be coupled. It was only when
information researchers who were working with language models turned their
attention to CLIR that closer integration began to be explored. We have
now formalized that closer integration in a way that extends the technique
to include ranking with Okapi BM25 weights, and further extension to other
ranking techniques would be quite straightforward. But the story does not
end there—the key idea is that representations of uncertainty have a natural
place in the retrieval process, and with that in mind we are well positioned
to think broadly about how best these techniques can be further extended,
and applied in new ways.
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