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A sigma-point Kalman filter is derived for integrating GPS measurements with inertial
measurements from gyros and accelerometers to determine both the position and the atti-
tude of a moving vehicle. Sigma-point filters use a carefully selected set of sample points
to more accurately map the probability distribution than the linearization of the standard
extended Kalman filter, leading to faster convergence from inaccurate initial conditions in
position/attitude estimation problems. The filter formulation is based on standard inertial
navigation equations. The global attitude parameterization is given by a quaternion, while
a generalized three-dimensional attitude representation is used to define the local attitude
error. A multiplicative quaternion-error approach is used to guarantees that quaternion
normalization is maintained in the filter. Simulation results are shown to compare the
performance of the sigma-point filter with a standard extended Kalman filter approach.

I. Introduction

The integration of Global Positioning System (GPS) signals with Inertial Measurement Units (IMUs)
has become a standard approach for position and attitude determination of a moving vehicle. An Inertial
Navigation System (INS) is best described in the Preface section of the excellent book by Chatfield,1 who
states “Inertial navigation involves a blend of inertial measurements, mathematics, control system design,
and geodesy.” Historically, INS’s were primarily used for military and commercial aircraft applications due
to their high cost. However, with the advent of cheaper sensors, especially micro-mechanical ones,2 sev-
eral new applications have become mainstream, including uninhabited air vehicles, micro-robots, and even
guided munitions.† Although these cheaper sensors do not perform as well as high-grade sensors in terms of
drift and white-noise measurement errors, they can be used to meet the requirements of several vehicle po-
sition/attitude knowledge specifications when aided with GPS. This allows for an attractive approach since
a completely self-contained system can be used to calibrate IMUs online using GPS-determined position
observations, while also determining vehicle attitude and rates in realtime.

By far the primary mechanism historically used to blend GPS measurements with IMU data has been the
extended Kalman filter (EKF).3 There are many approaches to mechanize an integrated GPS/INS in an EKF
though. One aspect involves how GPS observations are used in the filter design. The term “loosely-coupled”
is used to signify that position estimates taken from the GPS are used in the EKF as measurements, while
a “tightly-coupled” configuration utilizes the GPS pseudoranges directly. The main advantage of a tightly-
coupled system is that state quantity estimates can still be provided even when the minimum number of four
GPS satellites is not available. However, a tightly-coupled system requires knowledge of variables used to
implement the tracking loops that may not be readily available. Another aspect of an integrated GPS/INS is
the coordinate system used to described the determined position and attitude. The Earth-Centered-Earth-
Fixed (ECEF) frame, which will be described later, is useful since GPS receivers typically calculate positions
in this frame directly. However, the attitude of an air or ground vehicle is not physical intuitive in this
frame which is why a local frame, such as the North-East-Down (NED) frame, is often used. Also, since
a linearization of the equations of motion is required for the EKF, then using one frame over another can
produce different overall performance characteristics. For example, for long duration navigation, the local
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NED frame separates the unstable vertical axis from the more stable horizontal axes which provides more
intuitive schemes for analyzing INS errors than using the ECEF frame.4 The conversions between various
frames is well known (see Ref. 1 for more details). However, mapping of the covariance of the errors has not
been seen by the present author. Therefore, one of the goals of this paper is to present covariance mappings
between the NED and ECEF frames.

The EKF is widely used in practice, but it has one well-known drawback. If the errors are not within the
“linear region”, then filter divergence may occur. This is especially a problem for an integrated GPS/INS
since, even though position is well known, attitude and IMU calibration parameters may not be well known
a prior. In fact to this day the most researched topic in INS’s has been initial alignment and attitude
determination.1 Sigma-point Kalman filters essentially provide derivative-free higher-order approximations
by approximating a Gaussian distribution rather than approximating an arbitrary nonlinear function as
the EKF does.5 They can provide more accurate results than an EKF, especially when accurate initial
condition states are not well known. A sigma-point GPS/INS filter has been presented in Ref. 6, which also
includes a method to fuse latency lagged observations in a theoretically consistent fashion. The attitude
kinematics in that paper are based on the quaternion, which must obey a normalization constraint that
can be violated in the sigma-point filter since the predicted quaternion mean is derived using an averaged
sum of quaternions. In this current paper an unconstrained three-component attitude-error vector is used
to represent the quaternion error vector and the updates are performed using quaternion multiplication,
leading to a natural way of maintaining the normalization constraint.7 Also, Ref. 6 using an augmented
matrix approach to handle process noise, which means that a decomposition of a matrix that has length
equal to the length of the state vector plus the process-noise vector is required. In this paper a simple
first-order trapezoidal approximation is used so that a decomposition of a matrix equal to the length of the
state vector is only required. This significantly reduces the computational costs.

The organization of this paper proceeds as follows. First, the various coordinate frames used in INS
are summarized. Conversions from the NED frame to the ECEF frame and vice versa are shown. Then,
covariance mappings from the NED frame to the ECEF frame and vice versa are derived. Next, the linearized
equations for the EKF using NED coordinates are shown, which are derived from a multiplicative quaternion
approach. Then, a specific sigma-point filter, called the Unscented filter, is summarized followed by a review
of the equations required to perform GPS/INS operations with this filter. Finally, simulation results are
shown that compare the performance of the EKF with the Unscented filter with respect to initial condition
errors.

II. Reference Frames

In this section the reference frames used to derive the GPS/INS equations are summarized, as shown in
Figure 1:

• Earth-Centered-Inertial (ECI) Frame: denoted by {̂i1, î2, î3}. The î1 axis points toward the vernal

equinox direction (also known as the “First Point of Aries” or the “vernal equinox point”), the î3 axis

points in the direction of the North pole and the î2 axis completes the right-handed system (note that

the î1 and î2 axes are on the equator, which is the fundamental plane). The ECI frame is non-rotating
with respect to the stars (except for precession of equinoxes) and the Earth turns relative to this
frame.8 Vectors described using ECI coordinates will have a superscript I (e.g., rI).

• Earth-Centered-Earth-Fixed (ECEF) Frame: denoted by {ê1, ê2, ê3}. This frame is similar to the ECI

frame with ê3 = î3; however, the ê1 axis points in the direction of the Earth’s prime meridian, and
the ê2 axis completes the right-handed system. Unlike the ECI frame, the ECEF frame rotates with
the Earth. The rotation angle is denoted by Θ in Figure 1. Vectors described using ECEF coordinates
will have a superscript E (e.g., rE).

• North-East-Down (NED) Frame: denoted by {n̂, ê, d̂}. This frame is used for local navigation pur-
poses. It is formed by fitting a tangent plane to the geodetic reference ellipse at a point of interest.3 The
n̂ axis points true North, the ê points East, and the d̂ axis completes the right-handed system, which
points in the direction of the interior of the Earth perpendicular to the reference ellipsoid. Vectors
described using ECI coordinates will have a superscript N (e.g., rN ).
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Figure 1. Definitions of Various Reference Frames

• Body Frame: denoted by {b̂1, b̂2, b̂3}. This frame is fixed onto the vehicle body and rotates with it.
Conventions typically depend on the particular vehicle. Vectors described using body-frame coordinates
will have a superscript B (e.g., rB).

We now discuss the transformations between these reference frames. The transformation from the ECI
frame to the ECEF frame follows







x
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z







E

=







cos Θ sinΘ 0
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0 0 1













x

y

z







I

(1)

where {x, y, z}I are the components of the ECI position vector, and {x, y, z}E are the components of the
ECEF position vector. In order to determine the ECEF position vector we must first determine the angle
Θ, which is related to time. A solar day is the length of time that elapses between the Sun reaching its
highest point in the sky two consecutive times. However, the ECI coordinate system is fixed relative to the
stars, not the Sun. A sidereal day is the length of time that passes between a given fixed star in the sky
crossing a given projected meridian. A sidereal day is 4 minutes shorter than a solar day.8 The Greenwich
Mean Sidereal Time (GMST) is the mean sidereal time at zero longitude, which can be given by the angle
Θ. Several formulas for the conversion from Universal Time (UT) to GMST are given in the open literature
(e.g., see Ref. 9). One of the most widely-used formulas is presented by Meeus.10

The ECEF position vector is useful since this gives a simple approach to determine the longitude and
latitude of a user. The Earth’s geoid can be approximated by an ellipsoid of revolution about its minor axis.
A common ellipsoid model is given by the World Geodetic System 1984 model (WGS-84), with semimajor
axis a = 6, 378, 137.0 m and semiminor axis b = 6, 356, 752.3142 m. The eccentricity of this ellipsoid is given
by e = 0.0818. The geodetic coordinates are given by the latitude λ, longitude Φ and height h. To determine
the ECEF position vector, the length of the normal to the ellipsoid is first computed, given by3

N =
a

√

1 − e2 sin2 λ
(2)
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Then, given the observer geodetic quantities λ, Φ and h, the observer ECEF position coordinates are com-
puted using

x = (N + h) cos λ cos Φ (3a)

y = (N + h) cos λ sinΦ (3b)

z = [N(1 − e2) + h] sin λ (3c)

The conversion from ECEF to geodetic coordinates is not that straightforward. A complicated closed-form
solution is given in Ref. 3, but a good approximation up to low Earth orbit is given by11

p =
√

x2 + y2, ζ = atan

(

z a

p b

)

, ē2 =
a2 − b2

b2
(4a)

λ = atan

(

z + ē2 b sin3 ζ

p − e2 a cos3 ζ

)

(4b)

Φ = atan2(y, x) (4c)

h =
p

cos λ
− N (4d)

where N is given by Eq. (2) and atan2 is a four quadrant inverse tangent function.
The conversion from ECEF coordinates to NED coordinates involves a rotation matrix from the known

latitude and longitude. By the definition of the NED frame, a vehicle is fixed within this frame. This frame
serves to define local directions for the velocity vector determined in a frame in which the vehicle has motion,
such as the ECEF frame.4 The velocity in NED coordinates is given by

vN ≡







vN

vE

vD






= AN

E ṙE (5)

where ṙE is the vehicle velocity in ECEF coordinates and AN
E is the transformation matrix from the ECEF

frame to the NED frame. We should note that vN 6= ṙN in general since ṙN = vN −ωN
N/E ×rN , where ωN

N/E

is the angular velocity of the N frame relative to the E frame expressed in N coordinates. This relationship
can be derived by differentiating rN = AN

E rE . The NED frame is generally not used to provide a vehicle’s
positional coordinates, but rather to provide local directions along which the velocities may be indicated.
The positions are determined by relating the velocity vN with the derivatives of latitude, longitude and
height, and integrating the resulting equations (see Ref. 4 for more details). The transformation matrix is
given by3

AN
E =







− sin λ cos Φ − sin λ sinΦ cos λ

− sin Φ cos Φ 0

− cos λ cos Φ − cos λ sin Φ − sin λ






(6)

The attitude matrix which maps the NED frame to the vehicle body frame is given by

AB
N =







cos ψ cos θ sinψ cos θ − sin θ

− sin ψ cos φ + cos ψ sin θ sin φ cos ψ cos φ + sinψ sin θ sin φ cos θ sin φ

sin ψ sinφ + cos ψ sin θ cos φ − cos ψ sin φ + sin ψ sin θ cos φ cos θ cos φ






(7)

where φ, θ and ψ are the roll, pitch and yaw angles, respectively. Note that the transformation from the
ECEF to the body frame is simply given by AB

E = AB
NAN

E .

A. Covariance Mappings

In this section various covariance mappings from the ECEF frame to the the NED frame and vice versa
are shown. These expressions are required since the Kalman filter will be developed in ECEF coordinates.
Denote the covariance associated with the attitude matrix that maps the ECEF frame to the body frame
by PECEF

att . The covariance of the attitude matrix that maps the NED frame to the body frame, denoted by
PNED

att , is given by
PNED

att = AN
E PECEF

att AE
N (8)
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where AE
N is the transpose of AN

E . The velocity covariance follows from Eq. (5):

PNED
vel = AN

E PECEF
vel AE

N (9)

The covariance of latitude, longitude and height from the ECEF position covariance is more difficult. To
determine this quantity we require the partials of Eq. (4) with respect to x, y and z. The partials are given
by

∂λ

∂x
=

1

1 + u2

∂u

∂x
,

∂λ

∂y
=

1

1 + u2

∂u

∂y
,

∂λ

∂z
=

1

1 + u2

∂u

∂z
(10)

where u is defined by

u ≡ z + ē2 b sin3 ζ

p − e2 a cos3 ζ
(11)

The partials of u with respect to x, y and z are given by

∂u

∂x
= − (z + ē2 b sin3 ζ)

(p − e2 a cos3 ζ)2

(

x

p
+ e2 a

∂ζ

∂x
sin ζ cos2 ζ

)

+
3ē2b sin2 ζ cos ζ

p − e2 a cos3 ζ

∂ζ

∂x

(12a)

∂u

∂x
= − (z + ē2 b sin3 ζ)

(p − e2 a cos3 ζ)2

(

y

p
+ e2 a

∂ζ

∂y
sin ζ cos2 ζ

)

+
3ē2b sin2 ζ cos ζ

p − e2 a cos3 ζ

∂ζ

∂y

(12b)

∂u

∂x
=

[

3ē2b sin2 ζ cos ζ

p − e2 a cos3 ζ
− (z + ē2 b sin3 ζ)(e2 a sin ζ cos2 ζ)

(p − e2 a cos3 ζ)2

]

∂ζ

∂z

+
1

p − e2 a cos3 ζ

(12c)

where
∂ζ

∂x
= − x z a b

p (p2 b2 + z2 a2)
,

∂ζ

∂y
= − y z a b

p (p2 b2 + z2 a2)
,

∂ζ

∂z
=

p a b

p2 b2 + z2 a2
(13)

The partials of Eq. (4c) with respect to x, y and z are given by

∂Φ

∂x
= − y

x2 + y2
,

∂Φ

∂y
=

x

x2 + y2
,

∂Φ

∂z
= 0 (14)

The partials of Eq. (4d) with respect to x, y and z are given by

∂h

∂x
=

x

p cos λ
+

(

p sinλ

cos2 λ
− ∂N

∂λ

)

∂λ

∂x
(15a)

∂h

∂y
=

y

p cos λ
+

(

p sinλ

cos2 λ
− ∂N

∂λ

)

∂λ

∂y
(15b)

∂h

∂z
=

(

p sin λ

cos2 λ
− ∂N

∂λ

)

∂λ

∂z
(15c)

where
∂N

∂λ
=

a e2 sin λ cos λ

(1 − e2 sin2 λ)3/2
(16)

Next, the following sensitivity matrix is formed:

H ≡

























∂λ

∂x

∂λ

∂y

∂λ

∂z

∂Φ

∂x

∂Φ

∂y

∂Φ

∂z

∂h

∂x

∂h

∂y

∂h

∂z

























(17)
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Then, the covariance of the latitude, longitude and height, denoted by PLLH
pos , is given by

PLLH
pos = H PECEF

pos HT (18)

where PECEF
pos denotes the covariance of the ECEF position errors.

The attitude and velocity mappings from the NED frame to the ECEF frame is straightforward from
Eqs. (8) and (9), each given by PECEF

att = AE
NPNED

att AN
E and PECEF

vel = AE
NPNED

vel AN
E . The covariance of ECEF

positions from the latitude, longitude and height covariance is derived by taking the partials of the quantities
in Eq. (3) with respect to λ, Φ and h, which leads to the following partial matrix:

H =























∂N

∂λ
cos λ cos Φ − (N + h) sin λ cos Φ −(N + h) cos λ sin Φ cos λ cos Φ

∂N

∂λ
cos λ sin Φ − (N + h) sin λ sin Φ (N + h) cos λ cos Φ cos λ sin Φ

∂N

∂λ
(1 − e2) sin λ + [N(1 − e2) + h] cos λ 0 sin λ























(19)

Then, the covariance of the ECEF position covariance is given by

PECEF
pos = HPLLH

pos HT (20)

III. Attitude Kinematics

In this section the basic properties of attitude kinematics are summarized. The attitude matrix involves
a total of nine parameters, but they are clearly not independent. Various parameterizations of the attitude
matrix can be used: Euler angles, Euler axis and rotation angle, quaternions, Rodrigues parameters, etc.12

One of the most useful attitude parameterization is given by the quaternion,13 which is a four-dimensional
vector, defined as q ≡ [̺T q4]

T , with ̺ ≡ [q1 q2 q3]
T = ê sin(ϑ/2) and q4 = cos(ϑ/2), where ê is the

axis of rotation and ϑ is the angle of rotation. Since a four-dimensional vector is used to describe three
dimensions, the quaternion components cannot be independent of each other. The quaternion satisfies a
single constraint given by qT q = 1, which is analogous to requiring that ê be a unit vector in the Euler
axis/angle parameterization.12 The attitude matrix that transform the NED frame to the body frame is
related to the quaternion by

AB
N (q) = ΞT (q)Ψ(q) (21)

with

Ξ(q) ≡
[

q4I3×3 + [̺×]

−̺T

]

, Ψ(q) ≡
[

q4I3×3 − [̺×]

−̺T

]

(22)

where [̺×] is the cross product matrix, defined by

[̺×] ≡







0 −q3 q2

q3 0 q1

−q2 q1 0






(23)

An advantage to using quaternions is that the attitude matrix is quadratic in the parameters and also does
not involve transcendental functions. For small angles the vector part of the quaternion is approximately
equal to half angles so that ̺ ≈ α/2 and q4 ≈ 1, where α is a vector of the roll, pitch and yaw angles. The
attitude matrix can then be approximated by AB

N ≈ I3×3 − [α×] which is valid to within first-order in the
angles.

The attitude kinematics equation is given by

ȦB
N = −[ωB

B/N×]AB
N (24)

where ωB
B/N is angular velocity of the B frame relative to the N frame expressed in B coordinates. Another

form of Eq. (24) is given by
ȦN

B = AN
B [ωB

B/N×] (25)
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which will be used in the derivation of the INS equations. The quaternion kinematics equation is given by

q̇ =
1

2
Ξ(q)ωB

B/N =
1

2
Ω(ωB

B/N )q (26)

where

Ω(ωB
B/N ) ≡







−[ωB
B/N×] ωB

B/N

−(ωB
B/N )T 0






(27)

A major advantage of using quaternions is that the kinematics equation is linear in the quaternion and is also
free of singularities. Another advantage of quaternions is that successive rotations can be accomplished using
quaternion multiplication. Here we adopt the convention of Lefferts, Markley, and Shuster14 who multiply
the quaternions in the same order as the attitude matrix multiplication (in contrast to the usual convention
established by Hamiliton13). Suppose we wish to perform a successive rotation. This can be written using

A(q′)A(q) = A(q′ ⊗ q) (28)

The composition of the quaternions is bilinear, with

q′ ⊗ q =
[

Ψ(q′) q′

]

q =
[

Ξ(q) q
]

q′ (29)

Also, the inverse quaternion is defined by

q−1 ≡
[

−̺

q4

]

(30)

Note that q ⊗ q−1 = [0 0 0 1]T , which is the identity quaternion. A computationally efficient algorithm
to extract the quaternion from the attitude matrix is given in Ref. 15. A more thorough review of the
attitude representations shown in this section, as well as others, can be found in the excellent survey paper
by Shuster12 and in the book by Kuipers.16

IV. INS Basic Equations

The basic INS equations using NED coordinates with the quaternion parameterization are given by3,4

q̇ =
1

2
Ξ(q)ωB

B/N (31a)

λ̇ =
vN

Rλ + h
(31b)

Φ̇ =
vE

(RΦ + h) cos λ
(31c)

ḣ = −vD (31d)

v̇N = −
[

vE

(RΦ + h) cos λ
+ 2ωe

]

vE sin λ +
vNvD

Rλ + h
+ aN (31e)

v̇E =

[

vE

(RΦ + h) cos λ
+ 2ωe

]

vN sinλ +
vEvD

RΦ + h
+ 2ωevD cos λ + aE (31f)

v̇D = − v2
E

RΦ + h
− v2

N

Rλ + h
− 2ωevE cos λ + g + aD (31g)

where ωe is the Earth’s rotation rate given as (from WGS-84) 7.292115 × 10−5 rad/sec, and

Rλ =
a(1 − e2)

(1 − e2 sin2 λ)3/2
(32a)

RΦ =
a

(1 − e2 sin2 λ)1/2
(32b)
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The local gravity, g, using WGS-84 parameters is given by

g = 9.780327(1 + 5.3024 × 10−3 sin2 λ − 5.8 × 10−6 sin2 2λ)

− (3.0877 × 10−6 − 4.4 × 10−9 sin2 λ)h + 7.2 × 10−14h2 m/s2
(33)

where h is measured in meters. Note that Eq. (31a) cannot be used directly with the gyro measurement.
However, this problem can be overcome by using the following identity:

ωB
B/I = ωB

B/N + ωB
N/I (34)

Solving Eq. (34) for ωB
B/N and substituting ωB

N/I = AB
N (q)ωN

N/I yields

ωB
B/N = ωB

B/I − AB
N (q)ωN

N/I (35)

where

ωN
N/I = we







cos λ

0

− sin λ






+





















vE

RΦ + h

− vN

Rλ + h

−vE tan λ

RΦ + h





















(36)

Now Eq. (31a) can be related to the gyro measurements. Also, the acceleration variables are related to the
accelerometer measurements through

aN ≡







aN

aE

aD






= AN

B (q)aB (37)

where aB is the acceleration vector in body coordinates and AN
B (q) is the matrix transpose of AB

N (q).
The gyro measurement model is given by

ω̃B
B/I = (I3×3 + Kg)ω

B
B/I + bg + ηgv (38a)

ḃg = ηgu (38b)

where bg is the gyro “bias”, Kg is a diagonal matrix of gyro scale factors, and ηgv and ηgu are zero-mean
Gaussian white-noise processes with spectral densities given by σ2

gvI3×3 and σ2
guI3×3, respectively. The

accelerometer measurement model is given by

ãB = (I3×3 + Kg)a
B + ba + ηav (39a)

ḃa = ηau (39b)

where ba is the accelerometer “bias”, Ka is a diagonal matrix of accelerometer scale factors, and ηav and
ηau are zero-mean Gaussian white-noise processes with spectral densities given by σ2

avI3×3 and σ2
auI3×3,

respectively. We should note that most manufacturers give values for σgv and σav, but not σgu and σau.
The scale factors are assumed to be small enough so that the approximation (I + K)−1 ≈ (I − K) is valid
for both the gyros and acclerometers. Simulating gyro and accelerometer using computers is not easy since
continuous measurements cannot be generated using digital computers. A discrete-time simulation is possible
using the spectral densities though, which is shown in the Appendix. The same model can be used for the
accelerometer measurements.
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V. Extended Kalman Filter Equations

In this section the implementation equations for the EKF are shown. The estimated quantities are given
by

˙̂q =
1

2
Ξ(q̂)ω̂B

B/N (40a)

ω̂B
B/N = (I3×3 − K̂g)(ω̃

B
B/I − b̂g) − AB

N (q̂)ω̂N
N/I (40b)

˙̂
λ =

v̂N

R̂λ + ĥ
(40c)

˙̂
Φ =

v̂E

(R̂Φ + ĥ) cos λ̂
(40d)

˙̂
h = −v̂D (40e)

˙̂vN = −
[

v̂E

(R̂Φ + ĥ) cos λ̂
+ 2ωe

]

v̂E sin λ̂ +
v̂N v̂D

R̂λ + ĥ
+ âN (40f)

˙̂vE =

[

v̂E

(R̂Φ + ĥ) cos λ̂
+ 2ωe

]

v̂N sin λ̂ +
v̂E v̂D

R̂Φ + ĥ
+ 2ωev̂D cos λ̂ + âE (40g)

˙̂vD = − v̂2
E

R̂Φ + ĥ
− v̂2

N

R̂λ + ĥ
− 2ωev̂E cos λ̂ + ĝ + âD (40h)

âN ≡







âN

âE

âD






= AN

B (q̂)âB (40i)

âB = (I3×3 − K̂a)(ãB − b̂a) (40j)

˙̂
bg = 0 (40k)

˙̂
ba = 0 (40l)

˙̂
kg = 0 (40m)

˙̂
ka = 0 (40n)

where k̂g and k̂a are the elements of the diagonal matrices K̂g and K̂a, respectively. Also, ω̂N
N/I , R̂λ, R̂Φ and

ĝ are evaluated at the current estimates. Note that the attitude matrix is coupled into the position now,
which allows us to estimate the attitude from position measurements.

We now derive the error equations, which are used in the EKF covariance propagation. The quaternion
is linearized using a multiplicative approach.14 First, an error quaternion is defined by

δq = q ⊗ q̂−1 (41)

with δq ≡ [δ̺T δq4]
T , where the quaternion multiplication is defined by Eq. (29). The equivalent attitude

error matrix is given by

AB
N (δq) = AB

N (q)
[

AB
N (q̂)

]T
(42)

If the error quaternion is “small” then to within first order we have δ̺ ≈ δα/2 and δq4 ≈ 1, where δα is a
small error-angle rotation vector. Also, the quaternion inverse is defined by Eq. (30). The linearized model
error-kinematics follow17

δα̇ = −[ω̂B
B/N×]δα + δωB

B/I − A(q̂)δωN
N/I (43a)

δq̇4 = 0 (43b)

where δωB
B/I = ωB

B/I −ω̂B
B/I and δωN

N/I = ωN
N/I −ω̂N

N/I . Note that the fourth error-quaternion component is
constant. The first-order approximation, which assumes that the true quaternion is “close” to the estimated
quaternion, gives δq4 ≈ 1. This allows us to reduce the order of the system in the EKF by one state.
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The linearization using Eq. (41) maintains quaternion normalization to within first-order if the estimated
quaternion is “close” to the true quaternion, which is within the first-order approximation in the EKF. The
error δωB

B/I to within first-order can be written as

δωB
B/I = −

[

(I3×3 − K̂g)∆bg + (Ω̃B
B/I − B̂g)∆kg + (I3×3 − K̂g)ηgv

]

(44)

where ∆bg = bg − b̂g, ∆kg = kg − k̂g, Ω̃B
B/I is a diagonal matrix of the elements of ω̃B

B/I and B̂g is a

diagonal matrix of the elements of b̂g. The error δωN
N/I can be computed using a first-order Taylor series

expansion. This yields

δα̇ = −
[

(I3×3 − K̂g)(ω̃
B
B/I − b̂g)×

]

δα − (I3×3 − K̂g)∆bg − (Ω̃B
B/I − B̂g)∆kg − (I3×3 − K̂g)ηgv

− AB
N (q)

∂ωN
N/I

∂p

∣

∣

∣

∣

∣

p̂,v̂N

∆p − AB
N (q)

∂ωN
N/I

∂vN

∣

∣

∣

∣

∣

p̂

∆vN
(45)

where p ≡ [λ Φ h]T , ∆p = p − p̂ and ∆vN = vN − v̂N . The partials are given by

∂ωN
N/I

∂p
=

























−ωe sin λ − vE

(RΦ + h)2
∂RΦ

∂λ
0 − vE

(RΦ + h)2

vN

(Rλ + h)2
∂Rλ

∂λ
0

vN

(Rλ + h)2

−ωe cos λ − vE sec2 λ

RΦ + h
+

vE tan λ

(RΦ + h)2
∂RΦ

∂λ
0

vE tan λ

(RΦ + h)2

























(46a)

∂ωN
N/I

∂vN
=























0
1

RΦ + h
0

− 1

Rλ + h
0 0

0 − tan λ

RΦ + h
0























(46b)

with

∂RΦ

∂λ
=

a e2 sin λ cos λ

(1 − e2 sin2 λ)3/2
(47a)

∂Rλ

∂λ
=

3a(1 − e2)e2 sin λ cos λ

(1 − e2 sin2 λ)5/2
(47b)

The error equations for the remaining states can be derived using a similar approach to derive the attitude-
error equation.

The state, state-error vector, process noise vector and covariance used in the EKF are defined as

x ≡

























q

p

vN

bg

ba

kg

ka

























, ∆x ≡

























δα

∆p

∆vN

∆bg

∆ba

∆kg

∆ka

























, w ≡











ηgv

ηgu

ηav

ηau











(48a)

Q =











σ2
gvI3×3 03×3 03×3 03×3

03×3 σ2
guI3×3 03×3 03×3

03×3 03×3 σ2
avI3×3 03×3

03×3 03×3 03×3 σ2
auI3×3











(48b)
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The error-dynamics used in the EKF propagation are given by

∆ẋ = F∆x + Gw (49)

where

F ≡

























F11 F12 F13 F14 03×3 F16 03×3

03×3 F22 F23 03×3 03×3 03×3 03×3

F31 F32 F33 03×3 F35 03×3 F37

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

























(50a)

G ≡

























−(I3×3 − K̂g) 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 −AN
B (q̂)(I3×3 − K̂a) 03×3

03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

























(50b)

with

F11 = −
[

(I3×3 − K̂g)(ω̃
B
B/I − b̂g)×

]

, F12 = −AB
N (q̂)

∂ωN
N/I

∂p

∣

∣

∣

∣

∣

p̂,v̂N

, F13 = −AB
N (q)

∂ωN
N/I

∂vN

∣

∣

∣

∣

∣

p̂

(51a)

F14 = −(I3×3 − K̂g), F16 = −(Ω̃B
B/I − B̂g) (51b)

F22 =
∂ṗ

∂p

∣

∣

∣

∣

p̂,v̂N

, F23 =
∂ṗ

∂vN

∣

∣

∣

∣

p̂

(51c)

F31 = −AN
B (q̂)[âB×], F32 =

∂v̇N

∂p

∣

∣

∣

∣

p̂,v̂N

, F33 =
∂v̇N

∂vN

∣

∣

∣

∣

p̂,v̂N

(51d)

F35 = −AN
B (q̂)(I3×3 − K̂a), F37 = −AN

B (q̂)(ÃB − B̂a) (51e)

where ÃB is a diagonal matrix of the elements of ãB and B̂a is a diagonal matrix of the elements of b̂a. The
position partials are given by

∂ṗ

∂p
=





















− vN

(Rλ + h)2
∂Rλ

∂λ
0 − vN

(Rλ + h)2

− vE sec λ

(RΦ + h)2
∂RΦ

∂λ
+

vE sec λ tan λ

RΦ + h
0 − vE sec λ

(RΦ + h)2

0 0 0





















,
∂ṗ

∂vN
=





















1

Rλ + h
0 0

0
sec λ

RΦ + h
0

0 0 −1





















(52)

The velocity partials are given by

∂v̇N

∂p
=







Y11 0 Y13

Y21 0 Y23

Y31 0 Y33






,

∂v̇N

∂vN
=







Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 0






(53)
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where

Y11 = −v2
E sec2 λ

RΦ + h
+

v2
E tan λ

(RΦ + h)2
∂RΦ

∂λ
− 2ωevE cos λ − vNvD

(Rλ + h)2
∂Rλ

∂λ
(54a)

Y13 =
v2

E tan λ

(RΦ + h)2
− vNvD

(Rλ + h)2
(54b)

Y21 =
vE vN sec2 λ

RΦ + h
− vE vN tan λ

(RΦ + h)2
∂RΦ

∂λ
+ 2ωevN cos λ − vE vD

(RΦ + h)2
∂RΦ

∂λ
− 2ωevD sinλ (54c)

Y23 = −vE

[

vN tan λ + vD

(RΦ + h)2

]

(54d)

Y31 =
v2

E

(RΦ + h)2
∂RΦ

∂λ
+

v2
N

(Rλ + h)2
∂Rλ

∂λ
+ 2ωevE sinλ +

∂g

∂λ
(54e)

Y33 =
v2

E

(RΦ + h)2
+

v2
N

(Rλ + h)2
+

∂g

∂h
(54f)

and

Z11 =
vD

Rλ + h
, Z12 = −2vE tan λ

RΦ + h
+ 2ωe sinλ, Z12 =

vN

Rλ + h
(55a)

Z21 =
vE tan λ

RΦ + h
+ 2ωe sin λ, Z22 =

vD + vN tan λ

RΦ + h
, Z23 =

vE

RΦ + h
+ 2ωe cos λ (55b)

Z31 = − 2vN

Rλ + h
, Z32 = − 2vE

RΦ + h
− 2ωe cos λ (55c)

with

∂g

∂λ
= 9.780327[1.06048 × 10−2 sin λ cos λ − 4.64 × 10−5(sin λ cos3 λ − sin3 λ cos λ)] + 8.8 × 10−9h sinλ cos λ

(56a)

∂g

∂h
= −3.0877 × 10−6 + 4.4 × 10−9 sin2 λ + 1.44 × 10−13h (56b)

The GPS/INS estimation algorithm is summarized in Table 1. The assumed measurements are modelled
by

p̃k = pk + vk (57)

where vk is a zero-mean Gaussian noise process with covariance given by Rk, which is provided from the
solution of the GPS position determination problem coupled with the transformation given by Eq. (18). The
filter is first initialized with a known state (the bias initial conditions for the gyro and accelerometer are
usually assumed zero) and error-covariance matrix. The first three diagonal elements of the error-covariance
matrix correspond to attitude errors. Then, the Kalman gain is computed using the measurement-error
covariance Rk and sensitivity matrix. The state error-covariance follows the standard EKF update. The
position, velocity and bias states also follow the standard EKF additive correction while the attitude error-
state update is computed using a multiplicative update.14 Also, the updated quaternion is re-normalized by
brute force. Finally, the propagation equations follow the standard EKF model. The process noise covariance
is given in Eq. (48), and the matrices F and G are given in Eq. (50).

In order to reduce the computational load a discrete-time propagation of the covariance matrix can be
used, given by

P−
k+1 = ΦkP+

k ΦT
k + Qk (58)

where Φk is the discrete-time state transition matrix and Qk is the covariance matrix. A numerical solution
for these matrices is given by van Loan.18 First, the following 2n × 2n matrix is formed:

A =







−F GQGT

0 FT






∆t (59)
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Table 1. Extended Kalman Filter for (Loose) GPS/INS Estimation

x̂(t0) = x̂0

Initialize
P (t0) = P0

Kk = P−
k HT

k [HkP−
k HT

k + Rk]−1

Gain
Hk =

[

03×3 I3×3 03×3 03×3 03×3 03×3 03×3

]

P+
k = [I − KkHk]P−

k

∆x̂+
k = Kk[p̃k − p̂−

k ]

q̂+
k = q̂−

k +
1

2
Ξ(q̂−

k )δα̂+
k , re-normalize quaternion

p̂+
k = p̂−

k + ∆p̂+
k

v̂N+
k = v̂N−

k + ∆v̂N+
k

Update b̂+
gk

= b̂−
gk

+ ∆b̂+
gk

b̂+
ak

= b̂−
ak

+ ∆b̂+
ak

k̂+
gk

= k̂−
gk

+ ∆k̂+
gk

k̂+
ak

= k̂−
ak

+ ∆k̂+
ak

ω̂B
B/N = (I3×3 − K̂g)(ω̃

B
B/I − b̂g) − AB

N (q̂)ωN
N/I

˙̂q =
1

2
Ξ (q̂) ω̂B

B/N

âB = (I3×3 − K̂a)(ãB − b̂a)

Propagation
˙̂p = fp(p̂, v̂N )

˙̂v
N

= fv(p̂, v̂N ) + âN

Ṗ = F P + P FT + GQGT

where ∆t is the constant sampling interval. Then, the matrix exponential of Eq. (59) is computed:

B = eA ≡







B11 B12

0 B22






=







B11 Φ−1
k Qk

0 ΦT
k






(60)

The state transition matrix is then given by
Φk = BT

22 (61)

Also, the discrete-time process noise covariance is given by

Qk = Φk B12 (62)

Note, the first-order approximation of Eq. (62) is given by ∆tGQGT .
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VI. Unscented Filtering

In this section a new approach that has been developed by Julier, Uhlmann, and Durrant-Whyte19 is
shown as an alternative to the EKF. This approach, which they called the Unscented filter (UF), typically
involves more computations than the EKF, but has several advantages, including: 1) the expected error
is lower than the EKF, 2) the new filter can be applied to non-differentiable functions, 3) the new filter
avoids the derivation of Jacobian matrices, and 4) the new filter is valid to higher-order expansions than the
standard EKF. The UF works on the premise that with a fixed number of parameters it should be easier
to approximate a Gaussian distribution than to approximate an arbitrary nonlinear function. The filter
presented in Ref. 20 is derived for discrete-time nonlinear equations, where the system model is given by

xk+1 = f(xk, k) + wk (63a)

ỹk = h(xk, k) + vk (63b)

Note that a continuous-time model can always be written using eqn. (63a) through an appropriate numerical
integration scheme. It is assumed that wk and vk are zero-mean Gaussian noise processes with covariances
given by Qk and Rk, respectively. We first rewrite the Kalman filter update equations as21

x̂+
k = x̂−

k + Kkυk (64a)

P+
k = P−

k − KkP υυ
k KT

k (64b)

where υk is the innovations process, given by

υk ≡ ỹk − ŷ−
k

= ỹk − h(x̂−
k , uk, k)

(65)

The covariance of υk is defined by P υυ
k . The gain Kk is computed by

Kk = P xy
k (P υυ

k )−1 (66)

where P xy
k is the cross-correlation matrix between x̂−

k and ŷ−
k .

The Unscented filter uses a different propagation than the form given by the standard extended Kalman
filter. Given an n × n covariance matrix P , a set of order n points can be generated from the columns (or
rows) of the matrices ±

√
nP . The set of points is zero-mean, but if the distribution has mean µ, then simply

adding µ to each of the points yields a symmetric set of 2n points having the desired mean and covariance.19

Due to the symmetric nature of this set, its odd central moments are zero, so its first three moments are the
same as the original Gaussian distribution. This is the foundation for the UF.

A method for incorporating process noise in the UF is shown in Ref. 22. This approach generates
a set of points in [xk, wk] space that has the correct mean and covariance, and propagates these points
through the model in Eq. (63a). The predicted mean and covariance are also augmented to included the
process noise, but the basic structure of the their calculations remain unchanged (see Ref. 22 for more
details). Although this approach may more fully utilize the capability of the unscented transformation,
it will be more computationally costly due to the extra required calculations arising from the augmented
system. This significantly increases the computational burden, which may prohibit its use for actual onboard
implementations. Another approach based on a trapezoidal approximation will be shown here.

The general formulation for the propagation equations are given as follows. First, the following set of
sigma points are computed:

σk ← 2n columns from ±γ
√

P+
k + Q̄k (67a)

χk(0) = x̂+
k (67b)

χk(i) = σk(i) + x̂+
k (67c)

where the matrix Q̄k is related to the process noise covariance, which will be discussed shortly. The parameter
γ is given by

γ =
√

n + λ (68)
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where the composite scaling parameter, λ, is given by

λ = α2(n + κ) − n (69)

The constant α determines the spread of the sigma points and is usually set to a small positive value (e.g.,
1×10−4 ≤ α ≤ 1).20 Also, the significance of the parameter κ will be discussed shortly. One efficient method
to compute the matrix square root is the Cholesky decomposition.23 Alternatively, the sigma points can be
chosen to lie along the eigenvectors of the covariance matrix. Note that there are a total of 2n values for σk

(the positive and negative square roots). The transformed set of sigma points are evaluated for each of the
points by

χk+1(i) = f [χk(i), k] (70)

We now define the following weights:

Wmean
0 =

λ

n + λ
(71a)

W cov
0 =

λ

n + λ
+ (1 − α2 + β) (71b)

Wmean
i = W cov

i =
1

2(n + λ)
, i = 1, 2, . . . , 2n (71c)

where β is used to incorporate prior knowledge of the distribution (a good starting guess is β = 2).
The predicted mean for the state estimate is calculated using a weighted sum of the points χx

k+1(i), which
is given by

x̂−
k+1 =

2n
∑

i=0

Wmean
i χk+1(i) (72)

The predicted covariance is given by

P−
k+1 =

2n
∑

i=0

W cov
i [χk+1(i) − x̂−

k+1] [χk+1(i) − x̂−
k+1]

T + Q̄k (73)

The mean observation is given by

ŷ−
k+1 =

2n
∑

i=0

Wmean
i γk+1(i) (74)

where
γk+1(i) = h[χk+1(i), k + 1] (75)

The output covariance is given by

P yy
k+1 =

2n
∑

i=0

W cov
i [γk+1(i) − ŷ−

k+1] [γk+1(i) − ŷ−
k+1]

T (76)

Then the innovations covariance is simply given by

P υυ
k+1 = P yy

k+1 + Rk+1 (77)

Finally the cross correlation matrix is determined using

P xy
k+1 =

2n
∑

i=0

W cov
i [χk+1(i) − x̂−

k+1] [γk+1(i) − ŷ−
k+1]

T (78)

The filter gain is then computed using eqn. (66), and the state vector can now be updated using eqn. (64).
Even though propagations on the order of 2n are required for the Unscented filter, the computations may
be comparable to the extended Kalman filter (especially if the continuous-time covariance equation needs to
be integrated and a numerical Jacobian matrix is evaluated).
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The scalar κ in the previous set of equations is a convenient parameter for exploiting knowledge (if
available) about the higher moments of the given distribution.21 In scalar systems (i.e., for n = 1), a value
of κ = 2 leads to errors in the mean and variance that are sixth order. For higher-dimensional systems
choosing κ = 3 − n minimizes the mean-squared-error up to the fourth order.19 However, caution should be
exercised when κ is negative since a possibility exists that the predicted covariance can become non-positive
semi-definite. A modified form has been suggested for this case (see Ref. 19). Also, a square root version of
the Unscented filter is presented in Ref. 20 that avoids the need to re-factorize at each step. Furthermore,
Ref. 20 presents an Unscented Particle filter, which makes no assumptions on the form of the probability
densities, i.e., full nonlinear, non-Gaussian estimation.

Reference 22 states that if the process noise is purely additive in the model, then its covariance can simply
be added using a simple additive procedure. In this paper we expand upon this concept by incorporating an
approximation for the integration over the sampling interval, which more closely follows the actual process.
Any process noise that is added to the state vector in the UF is effectively multiplied by the state transition
matrix, Φ(∆t), which gives Φ(∆t)QkΦT (∆t) at the end of the interval. This mapping is done automatically
by the state propagation, and does not need to be explicitly accounted for in the propagation. However,
adding equal process noise at the beginning and end of the propagation might yield better results. The total
desired process noise follows

Φ(∆t) Q̄kΦT (∆t) + Q̄k = Qk (79)

where Q̄k is used in Eq. (67a) and in the calculation of the predicted covariance in Eq. (73). This approach
is similar to a trapezoid rule for integration. Equation (79) is known as the discrete-time Sylvester equation.

A. Unscented GPS/INS Filter

In this section an UF is derived for GPS/INS estimation. This filter is straightforward, except for the
quaternion normalization. Mainly, referring to Eq. (72), since the predicted quaternion mean is derived
using an averaged sum of quaternions, no guarantees can be made that the resulting quaternion will have
unit norm. This makes the straightforward implementation of the UF with quaternions undesirable. A better
way involves using an unconstrained three-component vector to represent an attitude error quaternion. We
begin by defining the following state vector:

χk(0) = x̂+
k ≡

























δŝ+
k

p̂+
k

v̂N+
k

b̂+
gk

b̂+
ak

k̂+
gk

k̂+
ak

























, χk(i) ≡

























χδs
k (i)

χ
p
k(i)

χV N

k (i)

χ
bg

k (i)

χba

k (i)

χ
Kg

k (i)

χKa

k (i)

























(80)

where δŝ+
k is a generalized Rodrigues error-vector24 used to propagate and update a nominal quaternion.

Since this three-dimensional representation is unconstrained, the resulting overall covariance matrix is a
21 × 21 matrix. Therefore, using Eq. (72) poses no difficulties, which makes this an attractive approach.
Now, define the first three components of the vector χk(i) in Eq. (67) as χδs

k (i). To describe χδs
k we first

define a new quaternion generated by multiplying an error quaternion by the current estimate. Using the
notation in Eq. (67) we assume

q̂+
k (0) = q̂+

k (81a)

q̂+
k (i) = δq+

k (i) ⊗ q̂+
k , i = 1, 2, . . . , 42 (81b)

with δq+
k (i) ≡

[

δ̺+T
k (i) δq+

4k
(i)

]T
represented by24

δq+
4k

(i) =
−a ||χδs

k (i)||2 + f
√

f2 + (1 − a2)||χδs
k (i)||2

f2 + ||χδs
k (i)||2 , i = 1, 2 . . . , 42 (82a)

δ̺+
k (i) = f−1

[

a + δq+
4k

(i)
]

χδs
k (i), i = 1, 2, . . . , 42 (82b)
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Figure 2. Number of Available GPS Satellites

where a is a parameter from 0 to 1, and f is a scale factor. Note when a = 0 and f = 1 then χδs
k gives the

Gibbs vector, and when a = f = 1 then χδs
k gives the standard vector of modified Rodrigues parameters

(MRPs). For small errors the attitude part of the covariance is closely related to the attitude estimation
errors for any rotation sequence, given by a simple factor.14 For example, the Gibbs vector linearize to half
angles, and the vector of MRPs linearize to quarter angles. We will choose f = 2(a + 1) so that ||χδs

k || is
equal to the rotational error-angle for small errors. Equation (81a) clearly requires that χδs

k (0) be zero. This
is due to the reset of the attitude error to zero after the previous update, which is used to move information
from one part of the estimate to another part.25 This reset rotates the reference frame for the covariance, so
we might expect the covariance to be rotated, even though no new information is added. But the covariance
depends on the assumed statistics of the measurements, not on the actual measurements. Therefore, since
the update is zero-mean, the mean rotation caused by the reset is actually zero, so the covariance is in fact
not affected by the reset. Next, the updated quaternions are propagated forward using Eq. (40a), with

˙̂q(i) =
1

2
Ξ[q̂(i)]ω̂B

B/N (i), i = 0, 1, . . . , 42 (83)

with the estimated angular velocities given by

ω̂B
B/N (i) = [I3×3 − χKg (i)]

[

ω̃B
B/I − χbg (i)

]

− AB
N [q̂(i)]ωN

N/I , i = 0, 1, . . . , 42 (84)

where χKg (i) and χbg (i) are formed from the gyro scale-factor and bias sigma points, respectively. The
propagated error quaternions are computed using

δq−
k+1(i) = q̂−

k+1(i) ⊗
[

q̂−
k+1(0)

]−1
, i = 0, 1, . . . , 42 (85)

Note that δq−
k+1(0) is the identity quaternion. Finally, the propagated sigma points can be computed using24

χδs
k+1(0) = 0 (86a)

χδs
k+1(i) = f

δ̺−
k+1(i)

a + δq−4k+1
(i)

, i = 1, 2, . . . , 42 (86b)

with
[

δ̺−T
k+1(i) δq−4k+1

(i)
]T

= δq−
k+1(i). The predicted mean and covariance can now be computed using

Eqs. (72) and (73).
The procedure in the Unscented GPS/INS filter is as follows. We are given initial estimates for the

attitude, position, velocity, and biases and scale factors, as well as an initial 21× 21 covariance (P+
0 ), where
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the upper 3×3 partition of P+
0 corresponds to attitude error angles. The first three components of the initial

state vector in the UF is set to zero and the others are set to their initial values for position, velocity, biases
and scale factors. We choose the parameter a and set f = 2(a + 1). Then, Q̄k is calculated using Eq. (79),
which will be used in Eqs. (67a) and (73), where Φk is given by Eq. (61) and Qk is given by Eq. (62). The
sigma points are then calculated using Eq. (67). Next, the corresponding error quaternions are calculated
using Eq. (82), where Eq. (81) is used to compute the sigma-point quaternions from the error quaternions.
The quaternions are subsequently propagated forward in time using Eq. (83). Then, the propagated error
quaternions are determined using Eq. (85), and the propagated sigma points are calculated using Eq. (86).
All other sigma-point quantities, such as position, velocity, biases and scale factors, are propagated using
Eq. (40). The predicted mean and covariance can now be computed using Eqs. (72) and (73). Storing the
propagated quaternions from Eq. (83) we then calculate the mean observations using Eqs. (74) and (75).
The output covariance, innovation covariance and cross-correlation matrix are computed using Eqs. (76),
(77) and (78). Next, the state vector and covariance are updated using Eq. (64). Then, the quaternion is
updated using

q̂+
k+1 = δq+

k+1 ⊗ q̂−
k+1(0) (87)

where δq+
k+1 ≡

[

δ̺+T
k+1 δq+

4k+1

]T

is represented by24

δq+
4k+1

=
−a ||δŝ+

k+1||2 + f
√

f2 + (1 − a2)||δŝ+
k+1||2

f2 + ||δŝ+
k+1||2

(88a)

δ̺+
k+1 = f−1

[

a + δq+
4k+1

]

δŝ+
k+1 (88b)

Finally, δŝ+
k+1 is reset to zero for the next propagation.

VII. Simulation Results

In this section simulation results are shown that estimate for a moving vehicle’s attitude, position and
velocity, as well as the gyro and accelerometer biases and scale factors. All measurements are assumed to
be sampled every 1 second. The total time of the simulation is 8 minutes. The gyro noise parameters are
given by σgv = 2.9089×10−7 rad/sec1/2 and σgu = 9.1989×10−7 rad/sec3/2. The accelerometer parameters
are given by σav = 9.8100 × 10−5 m/sec3/2 and σau = 6.0000 × 10−5 m/sec5/2. Initial biases for the gyros
and accelerometers are given by 10 deg/hr and 0.003 m/s2, respectively, for each axis. Also, Kg = 0.01I3×3

and Ka = 0.005I3×3. The vehicle motion is described in NED coordinates with the origin (point of interest)
location at λ0 = 38◦ and Φ0 = −77◦. The initial quaternion is given so that the vehicle body frame is aligned
with the local NED frame. The initial velocity is given by vN

0 = [200 200 − 10]T m/s. The acceleration
inputs are given by aN = 0, aE = 0 and aD = −g0, where g0 is the initial gravity. The rotational rate
profile is given by: 5 deg/min rotation about the x axis for the first 160 seconds and then zero for the final
320 seconds; no rotation about the y axis for the first 160 seconds, then a 5 deg/min rotation for the next
160 seconds and zero for the final 160 seconds; no rotation about the z axis for the first 320 seconds, then 5
deg/min rotation for the final 160 seconds. The GPS constellation is simulated using GPS week 137 and a
time of applicability of 61440.0000 seconds (see Ref. 11 for an explanation of GPS time). Using the position
profile the number of GPS satellites available can be computed using a 15◦ elevation cutoff.11 The number
of available GPS satellites over time is shown in Figure 2, which ranges from a minimum of 5 satellites to a
maximum of 6 satellites. The clock-bias drift is modelled using a random walk process: τ̇ = wτ , where the
variance (in seconds) of wτ is given by 200. GPS measurements are obtained using a standard deviation of
5 meters for the white-noise errors.

Using all available GPS pseudoranges an ECEF position is determined using nonlinear least squares,
which is then converted into longitude, latitude and height using Eq. (4). These quantities are used as
“measurements” in the filters with covariance computed using Eq. (18), where PECEF

pos is computed from the
nonlinear least square solution. The approach corresponds to a “loose” GPS/INS configuration. In general,
position is very well known but attitude is not. To test the robustness of the EKF an initial attitude error of
15 degrees is given in each axis. This error is not unrealistic for an actual application. The initial covariance
matrix P0 in the EKF is diagonal. For this case, the three attitude parts of the initial covariance are each
set to a 3σ bound of 15 degrees, i.e., [(15/3) × (π/180)]2 rad2. The initial estimates for position are set
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to the true latitude, longitude and height. The initial variances for latitude and longitude are each given
by (1 × 10−6)2 rad2. The initial variance for height is given by (20/3)2 m2. To further stress the filters
the initial velocity is set to zero. For this case, the initial variances in the filters for vN and vE are each
set to (200/3)2 and the initial variance for vD is set to (10/3)2. The initial gyro and accelerometer biases
and scale factors are all set to zero. The three gyro-bias parts of the initial covariance are each set to a 3σ
bound of 30 degrees per hour, i.e., [(30/3) × (π/(180 × 3600))]2. The three accelerometer-bias parts of the
initial covariance are each set to a 3σ bound of 0.005 meters per second-squared, i.e., (0.005/3)2. The three
gyro-scale factor parts of the initial covariance are each set to a 3σ bound of 0.015, i.e., (0.015/3)2. Finally,
the three accelerometer-scale factor parts of the initial covariance are each set to a 3σ bound of 0.010, i.e.,
(0.010/3)2. The parameters used in the UF are given by α = 0.003, β = 2 and κ = 3 − n, where n = 21.

The resulting EKF attitude errors for a typical case are shown in Figure 3(a). The attitude errors diverge
and significantly drift outside their respective 3σ bounds, which indicates that the EKF is performing in a
subpar fashion. This is due to the large initial errors that are not handled well in the linearization of the
dynamic model in the EKF. However, the UF attitude errors are much closer to their respective 3σ bounds
than the EKF attitude errors, as shown in Figure 3(b). The larger errors in yaw are due to the fact that
this angle is the least observable state for the particular vehicle motion. The biggest concern with the EKF
solutions is the confidence of the results dictated by the 3σ bounds. In fact, if the truth is not known a

prior and we only had the covariance to assess filter performance, this plot would indicate that the EKF
is performing better than the UF. This can certainly provide some misleading results when using the EKF
with large initial condition errors. The position errors for the EKF are given by Figure 3(c). The latitude
and height errors remain within their respective 3σ bounds for the entire simulation run, but longitude drifts
outside the bound for a small period. This is a surprising result for the EKF since position measurements
are directly used in the filter. However, all UF position errors remain inside their respective 3σ bounds.
A comparison of the gyro bias estimates between the EKF and UF is shown by Figures 3(e) and 3(f),
respectively. The errors for the EKF drift outside of their respected 3σ bounds for every axis. However, the
UF bias errors are much closer to their 3σ bounds than the EKF bias errors, as shown in Figure 3(f). These
simulation results clearly indicate that the UF is able to provide more robust characteristics than an EKF
for GPS/INS applications.

VIII. Conclusions

In this paper an Unscented filter formulation was derived for the purpose of GPS/INS applications. The
filter is based on a quaternion parameterization of the attitude. However, straightforward implementation of
the Unscented filter using quaternion kinematics did not produce a unit quaternion estimate. To overcome
this difficulty the quaternion was represented by a three-dimensional vector of generalized Rodrigues param-
eters, which also reduced the size the covariance matrix. Simulation results indicated that the performance
of the Unscented filter exceeds the standard extended Kalman filter for large initialization errors.
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Appendix

In this appendix the gyro noise model is described in more detail.‡ The single-axis gyro model with no
scale factor correction is given by

ω̃(t) = ω(t) + b(t) + ηv(t) (89a)

ḃ(t) = ηu(t) (89b)

Dividing Eq. (89a) by ∆t and integrating gives

1

∆t

∫ t0+∆t

t0

ω̃(t) dt =
1

∆t

∫ t0+∆t

t0

[ω(t) + b(t) + ηv(t)] dt (90)

Assuming that the measurement and truth are each constant over the interval (note: we cannot make the
same assumption for the stochastic variables) yields

ω̃(t0 + ∆t) = ω(t0 + ∆t) +
1

∆t

∫ t0+∆t

t0

[b(t) + ηv(t)] dt (91)

‡This model is derived from notes provided by F. Landis Markley of NASA Goddard Space Flight Center.
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Integrating Eq. (89b) gives

b(t0 + ∆t) = b(t0) +

∫ t0+∆t

t0

ηu(t) dt (92)

The variance of the gyro drift bias is given by

E
{

b2(t0 + ∆t)
}

= E

{[

b(t0) +

∫ t0+∆t

t0

ηu(t) dt

][

b(t0) +

∫ t0+∆t

t0

ηu(τ) dτ

]}

(93)

Using E {ηu(t)ηu(τ)} = σ2
u δ(t − τ) gives

E
{

b2(t0 + ∆t)
}

= E
{

b2(t0)
}

+ σ2
u ∆t (94)

Therefore, the bias can be simulated using

bm(t0 + ∆t) = bm(t0) + σu ∆t1/2Nu (95)

where the subscript m denotes a modelled quantity and Nu is a zero-mean random variable with unit variance.
The bias at time t is given by

b(t) = b(t0) +

∫ t

t0

ηu(τ) dτ (96)

Substituting Eq. (96) into Eq. (91) gives

ω̃(t0 + ∆t) = z +
1

∆t

∫ t0+∆t

t0

∫ t

t0

ηu(τ) dτ dt +
1

∆t

∫ t0+∆t

t0

ηv(t) dt (97)

where z ≡ ω(t0 + ∆t) + b(t0). The correlation between the drift and rate measurement is given by

E {b(t0 + ∆t) ω̃(t0 + ∆t)} = E

{[

b(t0) +

∫ t0+∆t

t0

ηu(τ) dτ

]

×
[

ω(t0 + ∆t) + b(t0) +
1

∆t

∫ t0+∆t

t0

∫ t

t0

ηu(ζ) dζ dt +
1

∆t

∫ t0+∆t

t0

ηv(t) dt

]} (98)

Since ηu(t) and ηv(t) are uncorrelated we have

E {b(t0 + ∆t) ω̃(t0 + ∆t)} = E {z b(t0)} +
σ2

u

∆t

∫ t0+∆t

t0

∫ t0+∆t

t0

∫ t

t0

δ(τ − ζ) dζ dτ dt

= E {z b(t0)} +
σ2

u

∆t

∫ t0+∆t

t0

(t − t0) dt

= E {z b(t0)} +
1

2
σ2

u ∆t

(99)

Equation (99) can be satisfied by modelling the gyro measurement using

ω̃m(t0 + ∆t) = ωm(t0 + ∆t) + bm(t0) +
1

2
σu ∆t1/2Nu + cNv (100)

where c is yet to be determined and Nv is a zero-mean random variable with unit variance. Note that
Eq. (100) can be proven by evaluating E {bm(t0 + ∆t) ω̃m(t0 + ∆t)}. Solving Eq. (95) for Nu and substituting
the resultant into Eq. (100) yields

ω̃m(t0 + ∆t) = ωm(t0 + ∆t) +
1

2
[bm(t0 + ∆t) + bm(t0)] + cNv (101)

Note that 1
2
[bm(t0 + ∆t) + bm(t0)] is the “average” of the bias at the two times. This term is present due

to the fact that the trapezoid rule for integration is exact for linear systems. To evaluate c we compute the

21 of 24

American Institute of Aeronautics and Astronautics



variance of the rate measurement:

E
{

ω̃2(t0 + ∆t)
}

= E

{[

z +
1

∆t

∫ t0+∆t

t0

∫ τ

t0

ηu(υ) dυ dτ +
1

∆t

∫ t0+∆t

t0

ηv(τ) dτ

]

×
[

z +
1

∆t

∫ t0+∆t

t0

∫ t

t0

ηu(ζ) dζ dt +
1

∆t

∫ t0+∆t

t0

ηv(t) dt

]} (102)

Since ηu(t) and ηv(t) are uncorrelated and using E {ηv(t)ηv(τ)} = σ2
v δ(t − τ), then Eq. (102) simplifies to

E
{

ω̃2(t0 + ∆t)
}

= E
{

z2
}

+
σ2

u

∆t2

∫ t0+∆t

t0

∫ t0+∆t

t0

∫ t

t0

∫ τ

t0

δ(υ − ζ) dυ dζ dτ dt

+
σ2

v

∆t2

∫ t0+∆t

t0

∫ t0+∆t

t0

δ(t − τ) dτ dt

(103)

The second to last integral can be computed by the following steps:

∫ t0+∆t

t0

∫ t0+∆t

t0

∫ t

t0

∫ τ

t0

δ(υ − ζ) dυ dζ dτ dt

=

∫ t0+∆t

t0

∫ t0+∆t

t0

min(τ − t0, t − t0) dτ dt

=

∫ t0+∆t

t0

∫ t0+∆t

t0

min(x, y) dx dy

=

∫ ∆t

0

(

∫ y

0

x dx +

∫ ∆t

y

y dx

)

dy

=

∫ ∆t

0

[

1

2
y2 + y(∆t − y)

]

dy

=
1

3
∆t3

(104)

Therefore, Eq. (103) reduces down to

E
{

ω̃2(t0 + ∆t)
}

= E
{

z2
}

+
1

3
σ2

u ∆t +
σ2

v

∆t
(105)

The variance of the modelled rate measurement in Eq. (100) is given by

E
{

ω̃2
m(t0 + ∆t)

}

= E
{

z2
m

}

+
1

4
σ2

u ∆t + c2 (106)

Comparing Eq. (106) to Eq. (105) gives

c2 =
σ2

v

∆t
+

1

12
σ2

u ∆t (107)

Hence, the modelled rate measurement is given by

ω̃m(t0 + ∆t) = ωm(t0 + ∆t) +
1

2
[bm(t0 + ∆t) + bm(t0)] +

[

σ2
v

∆t
+

1

12
σ2

u ∆t

]1/2

Nv (108)

Generalizing Eqs. (95) and (108) for all times and dropping the subscript m gives the following formulas for
the discrete-time rate and bias equations

ω̃k+1 = ωk+1 +
1

2
[bk+1 + bk] +

[

σ2
v

∆t
+

1

12
σ2

u ∆t

]1/2

Nv (109a)

bk+1 = bk + σu ∆t1/2Nu (109b)
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These equations are valid for both gyro and accelerometer measurements.
We now discuss other aspects of gyro and accelerometer specifications and how they relate to the INS EKF

equations. We first discuss units. Unfortunately, specifications (and units) seem to vary from manufacturer
to manufacturer. There are a number of various definitions for the term “bias” as well. Grewal et al.26 give
an explanation of these various definitions. There is a fixed bias that only needs to be calibrated once, a
bias stability that varies from turn-on to turn-on due to thermal cycling among other causes, a bias drift

after turn-on, and other biases that are g-dependent and shock dependent. The PSD σ2
v is often referred to

as the angle random walk, which is a bit misleading. Also, σ2
u is sometimes referred to as the rate random

walk. Many manufacturers give σv in units of deg/sqrt(hr) and a conversion to rad/sqrt(sec) is simple. Some
manufacturers give the “random noise” units as deg/hr/sqrt(Hz). Both values are equivalent; if the second
value is divided by 60 units of deg/sqrt(hr) are obtained:

deg

hr
√

Hz
=

deg

hr
√

1
sec

× 3600sec
1 hr

=
deg

60hr
√

1
hr

=
deg

60
√

hr
(110)

The random noise of an accelerometer is often given in units of micro-g/sqrt(Hz). The conversion of these
units into meters/sec3/2 is given by

µmeters

sec2
√

Hz
=

meters × 10−6

sec2

√

1
sec

=
meters × 10−6

sec3/2
(111)

A small number of manufacturers will give rate changes and integrated output changes over time. The
conversion of these parameters to σu and σv is given in Ref. 27. Suppose we are given a rate change of x
rad/sec (1σ) in tx hours. Then σu is given by

σu =
x

60
√

tx
rad/sec3/2 (112)

Next, suppose we are given an integrated output change of y rad (1σ) in ty hours. Then σv is given by

σv =

√

y2 − 1
3
σ2

u × (3600 ty)3

3600 ty
rad/sec1/2 (113)

where σ2
u is calculated using Eq. (112).

A more general model is given by

ω̃(t) = (1 + κ)ω(t) + b(t) + d + ηv(t) (114a)

ḃ(t) = −α b(t) + ηu(t) (114b)

ḋ(t) = 0 (114c)

κ̇(t) = 0 (114d)

where κ is a “scale factor” and and the processes in Eqs. (114c) and (114c) are “random constants”. Often-
times the variance of d and κ are given by manufacturers as the “bias repeatability” and “scale factor error”,
respectively. The bias repeatability can be used to set b(t0). The units for the scale factor error are often
given in “parts per million” (ppm). To determine the standard deviation of κ multiply ppm by 1 × 10−6.
The process in Eq. (114b) is called a Markov process, where 1/α is the “correlation time”. The variance of
ηu(t) is written as4

E {ηu(t)ηu(τ)} = 2σ2α δ(t − τ) ≡ σ2
u δ(t − τ) (115)

where σ2 is just another parameter. Note that for gyros the units of σ2 are often given by deg/hr and for
accelerometers in mgal, where 1 mgal = 10−5 m/s2 (1 gal = 10−2 m/s2). Hence, given the “correlated noise”
parameters σ2 and 1/α, then σ2

u = 2σ2α.
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(a) EKF Attitude Errors and 3σ Bounds
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(b) UF Attitude Errors and 3σ Bounds
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(c) EKF Position Errors and 3σ Bounds
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(d) UF Position Errors and 3σ Bounds
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(e) EKF Gyro-Bias Errors and 3σ Bounds
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Figure 3. EKF and UF Results for Large Initial Errors
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