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Introduction

Many applications require an algorithm that averages quaternions in an optimal manner.

For example, when combining the quaternion outputs of multiple star trackers having this

output capability, it is desirable to properly average the quaternions without recomputing

the attitude from the the raw star tracker data. Other applications requiring some sort

of optimal quaternion averaging include particle filtering [1] and multiple-model adaptive

estimation [2], where weighted quaternions are used to determine the quaternion estimate.

For spacecraft attitude estimation applications, [1] derives an optimal averaging scheme

to compute the average of a set of weighted attitude matrices using the singular value de-

composition method [3]. Focusing on a 4-dimensional quaternion Gaussian distribution on
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the unit hypersphere, [4] provides an approach to computing the average quaternion by min-

imizing a quaternion cost function that is equivalent to the attitude matrix cost function

in [1]. Motivated by [1] and extending its results, this Note derives an algorithm that deter-

mines an optimal average quaternion from a set of scalar- or matrix-weighted quaternions.

Furthermore, a sufficient condition for the uniqueness of the average quaternion, and the

equivalence of the minimization problem, stated herein, to maximum likelihood estimation,

are shown.

For the scalar weighted case the goal is to find the average of a set of n attitude estimates,

qi, in quaternion form with associated weights wi. The simple procedure

q̄simple ,

(

n
∑

i=1

wi

)−1 n
∑

i=1

wi qi (1)

has two flaws. The first and most obvious flaw, that q̄ is not a unit quaternion, is easily

fixed by the ad hoc procedure of dividing q̄ by its norm. The second flaw is subtler. It is

well known that q and −q represent the same rotation, so that the quaternions provide a

2:1 mapping of the rotation group [5]. Thus changing the sign of any qi should not change

the average, but it is clear that Eq. (1) does not have this property.

The observation that we really want to average attitudes rather than quaternions, first

presented in [1], provides a way to avoid both of these flaws. Following this observation,

the average quaternion should minimize a weighted sum of the squared Frobenius norms of

attitude matrix differences:

q̄ , arg min
q∈S3

n
∑

i=1

wi ‖A(q) − A(qi)‖
2

F
(2)

where S3 denotes the unit 3-sphere.

The Average Quaternion

Using the definition of the Frobenius norm, the orthogonality of A(q) and A(qi), and

some properties of the matrix trace (denoted by Tr) gives

‖A(q) − A(qi)‖
2

F
= Tr

{

[A(q) − A(qi)]
T [A(q) − A(qi)]

}

= 6 − 2 Tr
[

A(q)AT (qi)
]

(3)
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This allows us to express Eq. (2) as

q̄ = arg max
q∈S3

Tr
[

A(q) BT
]

(4)

where

B ,

n
∑

i=1

wi A(qi) (5)

Equation (4) is in a form found in solving Wahba’s Problem [6], so many of the techniques

used for solving that problem [7] can be applied to finding the average quaternion. If compu-

tational efficiency is important, the well-known QUEST algorithm [8] can be recommended,

as will be discussed later. The matrix B is known as the attitude profile matrix [9] since it

contains all the information on the attitude.

A detailed review of quaternions can be found in [5], but we only need a few results for

this paper. We denote the vector and scalar parts of a quaternion by q ,
[

̺T q4

]T
, which

are assumed to obey the normalization condition ||̺||2 + q2
4 = qTq = 1. The attitude matrix

is related to the quaternion by

A(q) =
(

q2
4 − ||̺||2

)

I3×3 + 2 ̺ ̺T − 2 q4[̺×] (6)

where I3×3 is a 3 × 3 identity matrix and [̺×] is the cross-product matrix defined by

[̺×] ,









0 −q3 q2

q3 0 −q1

−q2 q1 0









(7)

Equation (6) can be used to verify the identity

Tr[A(q) BT ] = qT Kq (8)

where K is the symmetric traceless 4 × 4 matrix

K ,









B + BT − Tr(B)I3×3 z

zT Tr(B)









(9)

with z being defined by

[z×] , BT − B (10)

This is the basis of Davenport’s q-method [7]. The case at hand admits considerable simpli-
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fication, however. Substituting Eq. (6) for A(qi) into Eq. (5) and then into Eq. (9) gives

K , 4 M − wtotI4×4 (11)

where wtot ,
∑

n

i=1 wi, I4×4 is a 4 × 4 identity matrix and M is the 4 × 4 matrix

M ,

n
∑

i=1

wi qi q
T

i (12)

Thus the average quaternion can be found by the following maximization procedure:

q̄ = arg max
q∈S3

qT Mq (13)

The solution of this maximization problem is well known [10]. The average quaternion is

the eigenvector of M corresponding to the maximum eigenvalue. This avoids both of the

flaws of Eq. (1). The eigenvector is chosen to have unit norm to avoid the first flaw. The

second flaw is obviously avoided because changing the sign of any qi does not change the

value of M . The averaging procedure only determines q̄ up to a sign, which is consistent

with the 2:1 nature of the quaternion representation. If the QUEST algorithm is used to

find the eigenvector associated with the maximum eigenvalue, then the K matrix in Eq. (11)

must be used instead of the M matrix in Eq. (12), because the QUEST algorithm requires

a traceless matrix.

A closer look at the attitude error matrix defined by A(δqi) , A(q)AT (qi) gives a nice

interpretation of the optimization problem. The error quaternion is the product of q and

the inverse of qi, which can be written as [5]

δqi , q ⊗ q−1
i

= [Ξ(qi) qi]
T
q (14)

where

Ξ(q) ,





q4I3×3 + [̺×]

−̺T



 (15)

Note for future reference that [Ξ(qi) qi] is an orthogonal matrix representing a norm-

preserving rotation in quaternion space. The vector and scalar parts of the error quaternion

are given by

δ̺i = êi sin(δφi/2) = ΞT (qi)q (16a)

δq4i = cos(δφi/2) = qT

i q (16b)
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with êi being the unit Euler axis and δφi the rotation angle of the error. Substituting

Eqs. (16) into Eqs. (2) and (3) and using the quaternion normalization condition shows that

the average quaternion is given by

q̄ = arg min
q∈S3

n
∑

i=1

wi||δ̺i||
2 = arg min

q∈S3

n
∑

i=1

wi sin
2(δφi/2) (17)

This equation will be used in the sequel for the generalization of the results to non-scalar

weights.

The fact that the average quaternion minimizes the weighted sum of the squared lengths

of the vector parts of the error quaternions, or the weighted sum of the squares of the

sines of the half-error-angles, may be more intuitively pleasing than the argument based on

the Frobenius norm. One might think that it would be better to minimize the weighted

sum of the squared angle errors themselves, but the sines of the half-error-angles have the

conceptual advantage of reaching a maximum at the maximum rotation error of π. Of course,

by the small-angle approximation of the sine, the difference between these minimizations is

negligible for small errors.

Averaging Two Quaternions

The two quaternion case can be solved in closed form because exact expressions for the

eigenvalues of M are available. This matrix has two eigenvectors in the hyperplane spanned

by q1 and q2 with eigenvalues

λ± =
1

2
(w1 + w2 ± z) (18)

where z ,
√

(w1 − w2)2 + 4w1w2(q
T
1 q2)2. The other two eigenvectors are orthogonal to this

hyperplane, and each has eigenvector zero. The optimal quaternion average corresponds to

the eigenvalue with upper sign in Eq. (18), and is given by

q̄ = ±

[
√

w1(w1 − w2 + z)

z(w1 + w2 + z)
q1 + sign(qT

1 q2)

√

w2(w2 − w1 + z)

z(w1 + w2 + z)
q2

]

(19)

The average is well defined unless qT

1 q2 = 0 and w1 = w2. In this case, the two eigenvalues

of Eq. (18) are equal, so the maximum eigenvalue of M is not unique and any quaternion

in the hyperplane spanned by q1 and q2 is an eigenvector with this eigenvalue. This is

the only two-observation case for which the average quaternion is not uniquely defined.

Equation (19) can be generalized to more than two observations in the trivial sense that

the average quaternion is some linear superposition of the quaternions that are averaged.

Easily-computable forms for the coefficients in the superposition can only be found for the
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two-observation case, however.

Uniqueness of the Average Quaternion

Because the average quaternion q̄ is the eigenvector associated with the maximum eigen-

value of M , q̄ is unique if and only if the two largest eigenvalues of M are not equal. A

sufficient condition for the uniqueness of the average quaternion is shown here. It is assumed

there is a reference frame in which every quaternion estimate qi differs from the identity

quaternion qref = [0 0 0 1]T by a rotation of less than π/2. This section proves that the

average quaternion q̄ minimizing Eq. (2) is unique with this assumption. This condition for

uniqueness is sufficient, but not necessary. The two-observation case provides a counterex-

ample to any claim of necessity.

The angle of rotation between qi and qref is given by 2 arccos |q4i
|. When the angle is less

than π/2, q2
4i

> 1/2, hence

q2
4i

> q2
1i

+ q2
2i

+ q2
3i

(20)

Now consider an attitude quaternion that is orthogonal to the identity quaternion qref, given

by q⊥ =
[

q⊥1 q⊥2 q⊥3 0
]T

. Define the gain function g(q) , qT Mq. The gain functions of q⊥

and qref are

g(q⊥) =

n
∑

i=1

wi(q
⊥

1 q1i
+ q⊥2 q2i

+ q⊥3 q3i
)2 (21)

and

g(qref) =

n
∑

i=1

wi q
2
4i

(22)

We have

g(qref) > g(q⊥) (23)

because

q2
4i

> (q⊥1 q1i
+ q⊥2 q2i

+ q⊥3 q3i
)2 (24)

To prove inequality (24), notice that, by the Cauchy inequality,

(q⊥1 q1i
+ q⊥2 q2i

+ q⊥3 q3i
)2 ≤

[

(q⊥1 )2 + (q⊥2 )2 + (q⊥3 )2
]

(q2
1i

+ q2
2i

+ q2
3i

) = q2
1i

+ q2
2i

+ q2
3i

(25)

where the fact that q⊥ has unit norm has been used. Inequality (24) then follows upon

combining Eqs. (20) and (25).
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Now, if the two largest eigenvalues of M are equal, the eigenvectors associated with the

maximum eigenvalue span a 2D subspace. The intersection of this subspace and the orthog-

onal complement of the identity quaternion (the subspace spanned by all q⊥ quaternions)

cannot be empty. A quaternion q in that intersection must satisfy g(q) = g(q̄) ≥ g(qref)

and g(q) < g(qref) simultaneously. By contradiction, the two largest eigenvalues cannot be

equal, hence the average quaternion is unique.

Matrix Weighted Case

This section expands upon the scalar weighted case to include general matrix weights.

For this case, a matrix weighted version of the minimization problem in Eq. (17) is assumed:

q̄ , arg min
q∈S3

n
∑

i=1

δ̺T

i R−1
i

δ̺T

i = arg min
q∈S3

n
∑

i=1

qT Ξ(qi) R−1
i

ΞT (qi)q (26)

where R−1
i

is the ith symmetric weighting matrix. In this case the average quaternion is the

eigenvector corresponding to the maximum eigenvalue of the matrix

M = −

n
∑

i=1

Ξ(qi) R−1
i

ΞT (qi) (27)

If R−1
i

= wi I3×3, the identities Ξ(qi) ΞT (qi) = I4×4 − qi q
T
i and ΞT (qi) Ξ(qi) = I3×3 can be

used to show that M = M −wtot I4×4, where M is given by Eq. (12), and that the traceless

K matrix for the matrix-weighted case is

K = 4M + Tr

(

n
∑

i=1

R−1
i

)

I4×4 =
n
∑

i=1

Ki (28)

with

Ki , −4 Ξ(qi) R−1
i

ΞT (qi) + Tr
(

R−1
i

)

I4×4 = [Ξ(qi) qi] K̃i [Ξ(qi) qi]
T (29)

where

K̃i = 2









2Fi − Tr(Fi)I3×3 03×1

0T

3×1 Tr(Fi)









(30)

Fi ,
1

2
Tr(R−1

i
) I3×3 − R−1

i
(31)

and 03×1 denotes a 3 × 1 vector of zeros.

The matrix K̃i has the same structure as the one in Eq. (9) with the corresponding
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attitude profile matrix given by B̃i = 2Fi. Because [Ξ(qi) qi] is an orthogonal matrix,

Eq. (29) shows that Ki and K̃i are related by a rotation. Their corresponding attitude

profile matrices are related by the same rotation. The attitude profile matrix corresponding

to Ki is given by Bi = B̃i A(qi), as is shown in the Appendix, and the attitude profile matrix

corresponding to K is given by

B =

n
∑

i=1

Bi = 2

n
∑

i=1

FiA(qi) (32)

If R−1
i

= wi I3×3, Eqs. (28) and (32) reduce to the corresponding quantities for scalar weights.

Relation to Maximum Likelihood Estimation

The relationship of the minimization problem in Eq. (26) to a maximum likelihood estimation

problem is now shown. Reference [11] establishes a maximum likelihood problem for attitude

matrices, which is related to the averaging problem in this paper. The maximum likelihood

estimate of the attitude matrix, denoted ÂML, is given as

ÂML , arg min
A∈SO

3

1

2

n
∑

i=1

Tr
[

(Ai − A)TFi(Ai − A)
]

(33)

where Ai is the ith given attitude matrix, SO
3 denotes the (special orthogonal) group of

rotation matrices and the matrix Fi defined by Eq. (31) is the Fisher information matrix of

the small attitude matrix errors, with Ri being the covariance of the small attitude vector

errors. Using properties of the matrix trace, we can write

Ji(A) ,
1

2
Tr
[

(Ai − A)TFi(Ai − A)
]

= Tr(Fi) −
1

2
Tr(A BT

i
) (34)

where Bi is the attitude profile matrix defined by Eq. (32). Using A = A(q) and the definition

of Fi gives Ji as a function of the quaternion:

Ji(q) = Tr(Fi) −
1

2
Tr
[

A(q) BT

i

]

=
1

2

[

Tr(R−1
i

) − qT Ki q
]

= 2 δ̺T

i R−1
i

δ̺T

i (35)

where Eqs. (8) and (29) have been used. Using the invariance property of the maximum

likelihood estimate [12],

ÂML = A(q̂ML) (36)
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where q̂ML is the maximum likelihood estimate of the quaternion. Hence, using Eq. (35) in

Eq. (33) gives

q̂ML = arg min
q∈S3

n
∑

i=1

δ̺T

i
R−1

i
δ̺T

i
(37)

which is identical with Eq. (26). Thus, we conclude that the average quaternion defined by

Eq. (26) is a maximum likelihood estimate.

The error-covariance associated with the small-angle attitude errors of the average quater-

nion is given by

R̄ =

{

ΞT (q̄)

[

n
∑

i=1

Ξ(qi)R
−1
i

ΞT (qi)

]

Ξ(q̄)

}−1

(38)

For small errors, this matrix is well approximated by

R̄ ≈

(

n
∑

i=1

R−1
i

)−1

(39)

Equation (39) can be used to develop 3-sigma bounds for the attitude errors between the

average and true quaternion.

Conclusions

An algorithm is presented for determining the average norm-preserving quaternion from

a set of weighted quaternions. The solution involves performing an eigenvalue/eigenvector

decomposition of a matrix composed of the given quaternions and weights. For both the

scalar- and matrix-weighted cases, the optimal average quaternion can be determined by the

computationally efficient QUEST algorithm. A sufficient condition for the uniqueness of the

average quaternion is presented for the scalar-weighted case. In the matrix-weighted case,

when the matrix weight is given by the inverse of the covariance of the small attitude vector

errors, the average quaternion is shown to be a maximum likelihood estimate. Thus, in this

case, the averaging procedure introduced here enjoys the well known desirable properties of

maximum likelihood estimators.

Appendix – Proof of Eq. (32)

This appendix proves that Bi = B̃i A(qi). Here we let unsubscribed q denote a normal-

ized, but otherwise completely arbitrary, quaternion. Then from Eqs. (8) and (29),

Tr[A(q)BT

i ] = qT Ki q = qT [Ξ(qi) qi] K̃i [Ξ(qi) qi]
T
q (A-1)
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Using Eq. (14) and the fact that the attitude profile matrix of K̃i is B̃i gives

Tr[A(q)BT

i ] = δqT

i K̃i δqi = Tr[A(δqi)B̃
T

i ] (A-2)

It follows from Eq. (14) that A(δqi) = A(q ⊗ q−1
i

) = A(q)AT (qi), so

Tr[A(q)BT

i ] = Tr[A(q)AT (qi)B̃
T

i ] (A-3)

Since this must be true for any quaternion q, it follows that

Bi = [AT (qi)B̃
T

i ]T = B̃i A(qi) (A-4)
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