6 Multilevel mathematical programming

Sequential optimization problems arise frequently in many fields, including economics, operations research, statistics and control theory. The theory and its applications have appeared in many scientific disciplines.

6.1 Problem definition

Let the decision variable space (Euclidean n-space), $\mathbb{R}^{n} \ni x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, be partitioned among r levels,

$$
\mathbb{R}^{n_{k}} \ni x^{k}=\left(x_{1}^{k}, x_{2}^{k}, \ldots, x_{n_{k}}^{k}\right) \quad \text { for } k=1, \ldots, r,
$$

where $\sum_{k=1}^{r} n_{k}=n$.
Denote the maximization of a function $f(x)$ over \mathbb{R}^{n} by varying only $x^{k} \in \mathbb{R}^{n_{k}}$ given fixed $x^{k+1}, x^{k+2}, \ldots, x^{r}$ in $\mathbb{R}^{n_{k+1}} \times \mathbb{R}^{n_{k+2}} \times \cdots \times \mathbb{R}^{n_{r}}$ by

$$
\begin{equation*}
\max \left\{f(x):\left(x^{k} \mid x^{k+1}, x^{k+2}, \ldots, x^{r}\right)\right\} \tag{1}
\end{equation*}
$$

The level one problem:

$$
\left(P^{1}\right)\left\{\begin{aligned}
\max & \left\{f_{1}(x):\left(x^{1} \mid x^{2}, \ldots, x^{r}\right)\right\} \\
\text { st: } & x \in S^{1}=S
\end{aligned}\right.
$$

The feasible region, $S=S^{1}$, is defined as the level-one feasible region. The solutions to P^{1} in \mathbb{R}_{1}^{n} for each fixed $x^{2}, x^{3}, \ldots, x^{r}$ form a set,

$$
S^{2}=\left\{\hat{x} \in S^{1}: f_{1}(\hat{x})=\max \left\{f_{1}(x):\left(x^{1} \mid \hat{x}^{2}, \hat{x}^{3}, \ldots, \hat{x}^{r}\right)\right\}\right\}
$$

called the level-two feasible region over which $f_{2}(x)$ is then maximized by varying x^{2} for fixed $x^{3}, x^{4}, \ldots, x^{r}$.
Thus the problem at level two is given by

$$
\left(P^{2}\right)\left\{\begin{aligned}
\max & \left\{f_{2}(x):\left(x^{2} \mid x^{3}, x^{4}, \ldots, x^{r}\right)\right\} \\
\text { st: } & x \in S^{2}
\end{aligned}\right.
$$

In general, the level- k feasible region is defined as

$$
S^{k}=\left\{\hat{x} \in S^{k-1} \mid f_{k-1}(\hat{x})=\max \left\{f_{k-1}(x):\left(x^{k-1} \mid \hat{x}^{k}, \ldots, \hat{x}^{r}\right)\right\}\right\},
$$

The problem at each level is

$$
\left(P^{k}\right)\left\{\begin{aligned}
\max & \left\{f_{k}(x):\left(x^{k} \mid x^{k+1}, \ldots, x^{r}\right)\right\} \\
\text { st: } & x \in S^{k}
\end{aligned}\right.
$$

which is a function of x^{k+1}, \ldots, x^{r}, and

$$
\left(P^{r}\right): \max _{x \in S^{r}} f_{r}(x)
$$

defines the entire problem.
This establishes a collection of nested mathematical
programming problems $\left\{P^{1}, \ldots, P^{r}\right\}$.
Question 6.1 P^{k} depends on given x^{k+1}, \ldots, x^{r}, and only x^{k} is varied. But $f^{k}(x)$ is defined over all x^{1}, \ldots, x^{r}. Where are the variables x^{1}, \ldots, x^{k-1} in problem P^{k} ?

Note that the objective at level $k, f_{k}(x)$, is defined over the decision space of all levels. Thus, the level- k planner may have his objective function determined, in part, by variables controlled at other levels. However, by controlling x^{k}, after decisions from levels $k+1$ to r have been made, level k may influence the policies at level $k-1$ and hence all lower levels to improve his own objective function.

6.2 A more general definition

$x \in \mathbb{R}^{N}$ partitioned as $\left(x^{a}, x^{b}\right)$.
For closed and bounded region $S \subset \mathbb{R}^{N}$ define:

$$
\Psi_{f}(S)=\left\{\hat{x} \in S: f(\hat{x})=\max \left\{f(x) \mid\left(x^{a} \mid \hat{x}^{b}\right)\right\}\right\}
$$

as the set of rational reactions of f over S.
Sometimes called the inducible region.
If for a fixed \hat{x}^{b} there exists a unique \hat{x}^{a} that maximizes $f\left(x^{a}, \hat{x}^{b}\right)$ over $\left(x^{a}, \hat{x}^{b}\right) \in S$, then there induced a mapping

$$
\hat{x}^{a}=\psi_{f}\left(\hat{x}^{b}\right)
$$

Then

$$
\Psi_{f}(S)=S \cap\left\{\left(x^{a}, x^{b}\right): x^{a}=\psi_{f}\left(x^{b}\right)\right\}
$$

If $S=S^{1}$ is the level-one feasible region, the level-two feasible region is

$$
S^{2}=\Psi_{f_{1}}\left(S^{1}\right)
$$

and the level- k feasible region is

$$
S^{k}=\Psi_{f_{k-1}}\left(S^{k-1}\right)
$$

Note 6.1 Even if S^{1} is convex, $S^{k}=\Psi_{f_{k-1}}\left(S^{k-1}\right)$ for $k \geq 2$ are typically non-convex sets.

6.3 The two-level linear resource control problem

The two-level linear resource control problem is the multilevel programming problem of the form

$$
\begin{aligned}
\max & c^{2} x \\
\mathrm{st}: & x \in S^{2}
\end{aligned}
$$

where

$$
S^{2}=\left\{\hat{x} \in S^{1}: c^{1} \hat{x}=\max \left\{c^{1} x:\left(x^{1} \mid \hat{x}^{2}\right)\right\}\right\}
$$

and

$$
S^{1}=S=\left\{x: A^{1} x^{1}+A^{2} x^{2} \leq b, x \geq 0\right\}
$$

Here, level 2 controls x^{2} which, in turn, varies the resource space of level one by restricting $A^{1} x^{1} \leq b-A^{2} x^{2}$.

The nested optimization problem can be written as:
$\left.\left(P^{2}\right)\left\{\begin{array}{ll}\max & \left\{c^{2} x=c^{21} x^{1}+c^{22} x^{2}:\left(x^{2}\right)\right\} \\ & \text { where } x^{1} \text { solves }\end{array}\right\} \begin{array}{rl}\max & \left\{c^{1} x=c^{11} x^{1}+c^{12} x^{2}:\left(x^{1} \mid x^{2}\right)\right\} \\ \text { st: } & A^{1} x^{1}+A^{2} x^{2} \leq b \\ & x \geq 0\end{array}\right] . \begin{cases}\end{cases}$
Question 6.2 Suppose someone gives you a proposed solution x^{*} to problem P^{2}. Develop an "easy" way to test that x^{*} is, in fact, the solution to P^{2}.

Question 6.3 What is the solution to P^{2} if $c^{1}=c^{2}$. What happens if c^{1} is substituted with $\alpha c^{1}+(1-\alpha) c^{2}$ for some $0 \leq \alpha \leq 1$?

6.4 The two-level linear price control problem

The two-level linear price control problem is another special case of the general multilevel programming problem. In this
problem, level two controls the cost coefficients of level one:

$$
\left(P^{2}\right)\left\{\begin{aligned}
\max & \left\{c^{2} x=c^{21} x^{1}+c^{22} x^{2}:\left(x^{2}\right)\right\} \\
\text { st: } & A^{2} x^{2} \leq b^{2} \\
& \text { where } x^{1} \text { solves } \\
& \left(P^{1}\right)\left\{\begin{aligned}
\max & \left\{\left(x^{2}\right)^{\mathrm{t}} x^{1}:\left(x^{1} \mid x^{2}\right)\right\} \\
\text { st: } & A^{1} x^{1} \leq b^{1} \\
& x^{1} \geq 0
\end{aligned}\right.
\end{aligned}\right.
$$

In this problem, level two controls the cost coefficients of level one.

6.5 Properties of S^{2}

Theorem 6.1 Suppose $S^{1}=\{x: A x=b, x \geq 0\}$ is bounded. Let

$$
S^{2}=\left\{\hat{x}=\left(\hat{x}^{1}, \hat{x}^{2}\right) \in S^{1}: c^{1} \hat{x}^{1}=\max \left\{c^{1} x^{1}:\left(x^{1} \mid \hat{x}^{2}\right)\right\}\right\}
$$

then the following hold:
(i) $S^{2} \subseteq S^{1}$
(ii) Let $\left\{y_{t}\right\}_{t=1}^{\ell}$ be any ℓ points of S^{1}, such that $x=\sum_{t} \lambda_{t=1}^{\ell} y_{t} \in S^{2}$ with $\lambda_{t} \geq 0$ and $\sum_{t} \lambda_{t}=1$. Then $\lambda_{t}>0$ implies $y_{t} \in S^{2}$.

Proof: See Bialas and Karwan [4].

A set $S^{2} \subseteq S^{1}$ with the above properties is called a shaving of S^{1}.

Note 6.2 The following results are due to Wen [19] (Chapter 2).

- shavings of shavings are shavings.
- shavings can be decomposed into convex sets that are shavings
- a convex set is always a shaving of itself.
- a relationship between shavings and the Karush-Kuhn-Tucker conditions for linear programming problems.

Definition 6.1 Let $S \subseteq \mathbb{R}^{n}$. A set $\sigma(S) \subseteq S$ is a shaving of S if and only if for any $y_{1}, y_{2}, \ldots, y_{\ell} \in S$, and $\lambda_{1} \geq 0, \lambda_{2} \geq 0, \ldots, \lambda_{\ell} \geq 0$ such that $\sum_{t=1}^{\ell} \lambda_{t}=1$ and $\sum_{t=1}^{\ell} \lambda_{t} y_{t}=x \in \sigma(S)$, the statement $\left\{\lambda_{i}>0\right\}$ implies $y_{i} \in \sigma(S)$.

The following figures illustrate the notion of a shaving.

The red region, $\sigma(S)$, in Figure A is a shaving of the set S. However in Figure B, the point $\lambda_{1} y_{1}+\lambda_{2} y_{2}=x \in \tau(T)$ with $\lambda_{1}+\lambda_{2}=1, \lambda_{1}>0, \lambda_{2}>0$. But y_{1} and y_{2} do not belong to $\tau(T)$. Hence $\tau(T)$ is not a shaving.

Theorem 6.2 Suppose $T=\sigma(S)$ is a shaving of S and $\tau(T)$ is a shaving of T. Let $\tau \circ \sigma$ denote the composition of the functions τ and σ. Then $\tau \circ \sigma(S)$ is a shaving of S.

Proof: Let $y_{1}, y_{2}, \ldots, y_{\ell} \in S$, and $\lambda_{1} \geq 0, \lambda_{2} \geq 0, \ldots, \lambda_{\ell} \geq 0$ such that $\sum_{t=1}^{\ell} \lambda_{t}=1$ and $\sum_{t=1}^{\ell} \lambda_{t} y_{t}=x \in \sigma(S)=T$.
Suppose $\lambda_{i}>0$. Since $\sigma(S)$ is a shaving of S then
$y_{i} \in \sigma(S)=T$. Since $\tau(T)$ is a shaving of $T, y_{i} \in T$, and
$\lambda_{i}>0$ then $y_{i} \in \tau(T)$. Therefore $y_{i} \in \tau(\sigma(S))$ so $\tau \circ \sigma(S)$ is a shaving of S.

It is easy to prove the following theorem:

Theorem 6.3 If S is a convex set, the $\sigma(S)=S$ is a shaving of S.
Theorem 6.4 Let $S \subseteq \mathbb{R}^{N}$. Let $\sigma(S)$ be a shaving of S. If x is an extreme point of $\sigma(S)$, then x is an extreme point of S.
Proof: See Bialas and Karwan [4].
Corollary 6.1 An optimal solution to the two-level linear resource control problem (if one exists) occurs at an extreme point of the constraint set of all variables $\left(S^{1}\right)$.

Proof: See Bialas and Karwan [4].
These results were generalized to n-levels by Wen [19]. Using Theorems 6.2 and 6.4, if f_{k} is linear and S^{1} is a bounded convex polyhedron then the extreme points of

$$
S^{k}=\Psi_{k-1} \Psi_{k-2} \cdots \Psi_{2} \Psi_{1}\left(S^{1}\right)
$$

are extreme points of S^{1}. This justifies the use of extreme point search procedures to finding the solution to the n-level linear resource control problem.

6.6 Cooperative Stackelberg games

The multilevel programming problem is actually a Stackelberg game. Suppose we allowed payers in that game to form coalitions?

- which coalitions will tend to form,
- are the coalitions enforceable, and
- what will be the resulting distribution of wealth to each of the players?

Games in partition function form (see Lucas and Thrall [16] and Shenoy [17]) provides a framework for answering these questions.

Definition 6.2 An abstract game is a pair (X, dom) where X is a set whose members are called outcomes and dom is a binary relation on X called domination.

Let $G=\{1,2, \ldots, n\}$ denote the set of n players.
Let $\mathcal{P}=\left\{R_{1}, R_{2}, \ldots, R_{M}\right\}$ denote a coalition structure where $R_{i} \cap R_{j}=\varnothing$ for all $i \neq j$ and $\cup_{i=1}^{M} R_{i}=G$.
Let $\mathcal{P}_{0} \equiv\{\{1\},\{2\}, \ldots,\{n\}\}$ denote the coalition structure where no coalitions have formed.

Let $\mathcal{P}_{G} \equiv\{G\}$ denote the grand coalition.
Assume that utility is additive and transferable.
Suppose $x=\left(x^{1}, \ldots, x^{n}\right)$ is the vector of strategies for players $1,2, \ldots, n$.

Under coalition structure $\mathcal{P}=\left\{R_{1}, R_{2}, \ldots, R_{M}\right\}$ the value of coalition R_{j} is,

$$
f_{R_{j}}^{\prime}(x)=\sum_{i \in R_{j}} f_{i}(x) .
$$

Hence instead of maximizing $f_{i}(x)$, player $i \in R_{j}$ will now be maximizing $f_{R_{j}}^{\prime}(x)$.
Let $\hat{x}(\mathcal{P})$ denote the solution to the resulting n-level optimization problem.

This is the cooperative Stackelberg strategy under coalition structure \mathcal{P}.

Definition 6.3 Suppose that S^{1} is compact and $\hat{x}(\mathcal{P})$ is unique. The value of (or payoff to) coalition $R_{j} \in \mathcal{P}$, denoted by $v\left(R_{j}, \mathcal{P}\right)$, is given by

$$
v\left(R_{j}, \mathcal{P}\right) \equiv \sum_{i \in R_{j}} f_{i}(\hat{x}(\mathcal{P}))
$$

Note 6.3 The function v need not be superadditive $■$
Definition 6.4 A solution configuration is a pair (r, \mathcal{P}), where r is an n-dimensional vector (called an imputation) whose elements $r_{i}(i=1, \ldots, n)$ represent the payoff to each player i under coalition structure \mathcal{P}.

Definition 6.5 A solution configuration (r, \mathcal{P}) is a feasible solution configuration if and only if $\sum_{i \in R} r_{i} \leq v(R, \mathcal{P})$ for all $R \in \mathcal{P}$.

Let Θ be the set of all feasible solution configurations.
Definition 6.6 Let $\left(r, \mathcal{P}_{r}\right),\left(s, \mathcal{P}_{s}\right) \in \Theta$. Then $\left(r, \mathcal{P}_{r}\right)$ dominates $\left(s, \mathcal{P}_{s}\right)$ if and only if there exists an nonempty $R \in \mathcal{P}$, such that

$$
\begin{align*}
& r_{i}>s_{i} \quad \text { for all } \quad i \in R \quad \text { and } \tag{2}\\
& \sum_{i \in R} r_{i} \leq v\left(R, \mathcal{P}_{r}\right) \tag{3}
\end{align*}
$$

We write $\left(r, \mathcal{P}_{r}\right) \operatorname{dom}\left(s, \mathcal{P}_{s}\right)$
Definition 6.7 The core, \mathcal{C}, of an abstract game is the set of undominated, feasible solution configurations.

Summary

- A model of the formation of coalitions among players in a Stackelberg game.
- Perfect information
- Coalitions are allowed to form freely.
- For every coalition structure, the order of the players' actions remains the same.
- Each coalition earns the combined proceeds that each individual coalition member would have received in the original Stackelberg game.
- A player acts for the joint benefit of the members of his coalition.

6.7 Results

Lemma 6.1 If solution configuration $(z, \mathcal{P}) \in \Theta$ then

$$
\sum_{i=1}^{n} z_{i} \leq \sum_{i=1}^{n} f_{i}\left(\hat{x}\left(\mathcal{P}_{G}\right)\right)=v\left(G, \mathcal{P}_{G}\right) \equiv V^{*}
$$

Theorem 6.5 If $(z, \mathcal{P}) \in \mathcal{C} \neq \varnothing$ then $\sum_{i=1}^{n} z_{i}=V^{*}$.
Theorem 6.6 The abstract game $(\Theta$, dom) has $\mathcal{C}=\varnothing$ if there exists coalition structures $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{m}$ and coalitions $R_{j} \in \mathcal{P}_{j}(j=1, \ldots, m)$ with $R_{j} \cap R_{k}=\varnothing$ for all $j \neq k$ such that

$$
\begin{equation*}
\sum_{j=1}^{m} v\left(R_{j}, \mathcal{P}_{j}\right)>V^{*} \tag{4}
\end{equation*}
$$

Theorem 6.7 If $n=2$ then $\mathcal{C} \neq \varnothing$.

6.8 An Example

Chew's [14] container game.
Let $c_{i j}$ represent the reward to player i if the commodity controlled by player j is placed in the container.

Let $C=\left[c_{i j}\right]$
Let $x_{j}=$ the amount of commodity j
Must have

$$
\begin{aligned}
\sum_{j=1}^{n} x_{j} & \leq 1 \\
x_{j} & \geq 0 \text { for } j=1, \ldots, n \\
C & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
5 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Note that $C x^{\top}$ is a vector whose components represent the earnings to each player.

Chew [14] provides a simple procedure to solve this game. The algorithm requires $c_{11}>0$.

Step 0: Initialize $\mathrm{i}=1$ and $\mathrm{j}=1$. Go to Step 1.
Step 1: If $i=n$, stop. The solution is $\hat{x}_{j}=1$ and $\hat{x}_{k}=0$ for $k \neq j$. If $i \neq n$, then go to Step 2.

Step 2: Set $i=i+1$. If $c_{i i}>c_{i j}$, then set $j=i$. Go to Step 1.

If no ties occur in Step 2 (i.e., $c_{i i} \neq c_{i j}$) then it can be shown
that the above algorithm solves the problem (see
Chew [14]).
Consider the three player game of this form with

$$
C=C_{\mathcal{P}_{0}}=\left[\begin{array}{lll}
4 & 1 & 4 \\
1 & 0 & 3 \\
2 & 5 & 1
\end{array}\right]
$$

Using $\mathcal{P}_{0}=\{\{1\},\{2\},\{3\}\}$
Outcome $\left(x_{1}, x_{2}, x_{3}\right)=(1,0,0)$
$v\left(\{1\}, \mathcal{P}_{0}\right)=4$
$v\left(\{2\}, \mathcal{P}_{0}\right)=1$
$v\left(\{3\}, \mathcal{P}_{0}\right)=2$. Using $\mathcal{P}=\{\{1\},\{2,3\}\}$

$$
C_{\mathcal{P}}=\left[\begin{array}{lll}
4 & 1 & 4 \\
3 & 5 & 4 \\
3 & 5 & 4
\end{array}\right]
$$

Under $\mathcal{P}=\{\{1\},\{2,3\}\}$
Outcome (0, 1, 0)
$v(\{1\}, \mathcal{P})=1$
$v(\{2,3\}, \mathcal{P})=5$. Using $\mathcal{P}_{G}=\{\{1,2,3\}\}$

$$
C_{\mathcal{P}_{G}}=\left[\begin{array}{lll}
7 & 6 & 8 \\
7 & 6 & 8 \\
7 & 6 & 8
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Under } \mathcal{P}_{G}=\{\{1,2,3\}\} \\
& \text { Outcome }(0,0,1) \\
& v\left(\{1,2,3\}, \mathcal{P}_{G}\right)=8
\end{aligned}
$$

Note that

$$
v\left(\{1\}, \mathcal{P}_{0}\right)+v(\{2,3\}, \mathcal{P})>v\left(\{1,2,3\}, \mathcal{P}_{G}\right) .
$$

From Theorem 6.6, we know that the core for this game is empty.

References

[1] J. F. Bard and J. E. Falk, "An explicit solution to the multi-level programming problem," Computers and Operations Research,, Vol. 9, No. 1 (1982), pp. 77-100.
[2] W. F. Bialas, Cooperative n-person Stackelberg games. working paper, SUNY at Buffalo (1998).
[3] W. F. Bialas and M. N. Chew, A linear model of coalition formation in n-person Stackelberg games. Proceedings of the 21st IEEE Conference on Decision and Control (1982), pp. 669-672.
[4] W. F. Bialas and M. H. Karwan, Mathematical methods for multilevel planning. Research Report 79-2, SUNY at Buffalo (February 1979).
[5] W.F. Bialas and M.H. Karwan, On two-level optimization. IEEE Transactions on Automatic Control;, Vol. AC-27, No. 1 (February 1982), pp. 211-214.
[6] W.F. Bialas and M.H. Karwan, Two-level linear programming. Management Science, Vol. 30, No. 8 (1984), pp. 1004-1020.
[7] J. Bracken and J. Falk and J. McGill. Equivalence of two mathematical programs with optimization problems in the constraints. Operations Research, Vol. 22 (1974), pp. 1102-1104.
[8] J. Bracken and J. McGill. Mathematical programs with optimization problems in the constraints. Operations Research, Vol. 21 (1973), pp. 37-44.
[9] J. Bracken and J. McGill. Defense applications of mathematical programs with optimization problems in the constraints. Operations Research, Vol. 22 (1974), pp. 1086-1096.
[10] Candler, W. and R. Norton, Multilevel Programming, unpublished research memorandum, DRC, World Bank, Washington, D.C., August 1976.
[11] Candler, W. and R. Townsley, A Linear Two-Level Programming Problem. Computers and Operations Research, Vol. 9, No. 1 (1982), pp. 59-76.
[12] R. Cassidy, M. Kirby and W. Raike. Efficient distribution of resources through three levels of government. Management Science, Vol. 17 (1971) pp. 462-473.
[13] A. Charnes, R. W. Clower and K. O. Kortanek. Effective control through coherent decentralization with preemptive goals. Econometrica, Vol. 35, No. 2 (1967), pp. 294-319.
[14] M. N. Chew. A game theoretic approach to coalition formation in multilevel decision making organizations. M.S. Thesis, SUNY at Buffalo (1981).
[15] J. Fortuny and B. McCarl, "A representation and economic interpretation of a two-level programming problem," Journal of the Operations Research Society, Vol. 32, No. 9 (1981), pp. 738-792.
[16] W. F. Lucas and R. M. Thrall, n-person Games in partition form. Naval Research Logistics Quarterly, Vol. 10, (1963) pp. 281-298.
[17] P. Shenoy, On coalition formation: a game theoretic approach. Intl. Jour. of Game Theory, (May 1978).
[18] L. N. Vicente and P. H. Calamai, Bilevel and multilevel programming: a bibliography review. Technical Report, University of Waterloo (1997) Available at: ftp://dial.uwaterloo.ca/pub/phcalamai/bilevel-review/bilevel-review.ps.
[19] U. P. Wen. Mathematical methods for multilevel programming, Ph.D. Thesis, SUNY at Buffalo (September 1981).

