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6 Multilevel mathematical
programming

Sequential optimization problems arise frequently in many
fields, including economics, operations research, statistics
and control theory. The theory and its applications have
appeared in many scientific disciplines.

6.1 Problem definition

Let the decision variable space (Euclidean n-space),
Rn 3 x = (x1, x2, . . . , xn), be partitioned among r levels,

Rnk 3 xk = (xk
1 , xk

2 , . . . , xk
nk

) for k = 1, . . . , r,

where
∑r

k=1 nk = n.

Denote the maximization of a function f(x) over Rn by
varying only xk ∈ Rnk given fixed xk+1, xk+2, . . . , xr in
Rnk+1 × Rnk+2 × · · · × Rnr by

max{f(x) : (xk |xk+1, xk+2, . . . , xr)}. (1)

The level one problem:

(P 1)





max {f1(x) : (x1 |x2, . . . , xr)}
st: x ∈ S1 = S
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The feasible region, S = S1, is defined as the level-one
feasible region. The solutions to P 1 in Rn

1 for each fixed
x2, x3, . . . , xr form a set,

S2 = {x̂ ∈ S1 : f1(x̂) = max{f1(x) : (x1 | x̂2, x̂3, . . . , x̂r)}},

called the level-two feasible region over which f2(x) is
then maximized by varying x2 for fixed x3, x4, . . . , xr.

Thus the problem at level two is given by

(P 2)





max {f2(x) : (x2 |x3, x4, . . . , xr)}
st: x ∈ S2

In general, the level- k feasible region is defined as

Sk = {x̂ ∈ Sk−1 | fk−1(x̂) = max{fk−1(x) : (xk−1 | x̂k, . . . , x̂r)}},

The problem at each level is

(P k)





max {fk(x) : (xk |xk+1, . . . , xr)}
st: x ∈ Sk

which is a function of xk+1, . . . , xr, and

(P r) : max
x∈Sr

fr(x)

defines the entire problem.

This establishes a collection of nested mathematical
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programming problems {P 1, . . . , P r}.
Question 6.1 P k depends on given xk+1, . . . , xr, and only
xk is varied. But fk(x) is defined over all x1, . . . , xr. Where
are the variables x1, . . . , xk−1 in problem P k?

Note that the objective at level k, fk(x), is defined over the
decision space of all levels. Thus, the level-k planner may
have his objective function determined, in part, by variables
controlled at other levels. However, by controlling xk, after
decisions from levels k + 1 to r have been made, level k

may influence the policies at level k − 1 and hence all lower
levels to improve his own objective function.

6.2 A more general definition

x ∈ RN partitioned as (xa, xb).

For closed and bounded region S ⊂ RN define:

Ψf (S) = {x̂ ∈ S : f(x̂) = max{f(x) | (xa | x̂b)}}

as the set of rational reactions of f over S.

Sometimes called the inducible region.

If for a fixed x̂b there exists a unique x̂a that maximizes
f(xa, x̂b) over (xa, x̂b) ∈ S, then there induced a mapping

x̂a = ψf (x̂b)
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Then
Ψf (S) = S ∩ {(xa, xb) : xa = ψf (xb)}

If S = S1 is the level-one feasible region, the level-two
feasible region is

S2 = Ψf1(S
1)

and the level-k feasible region is

Sk = Ψfk−1(S
k−1)

Note 6.1 Even if S1 is convex, Sk = Ψfk−1(S
k−1) for k ≥ 2

are typically non-convex sets.

6.3 The two-level linear resource control
problem

The two-level linear resource control problem is the
multilevel programming problem of the form

max c2x

st: x ∈ S2

where

S2 = {x̂ ∈ S1 : c1x̂ = max{c1x : (x1 | x̂2)}}
and

S1 = S = {x : A1x1 + A2x2 ≤ b, x ≥ 0}
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Here, level 2 controls x2 which, in turn, varies the resource
space of level one by restricting A1x1 ≤ b−A2x2.

The nested optimization problem can be written as:

(P 2)





max {c2x = c21x1 + c22x2 : (x2)}
where x1 solves

(P 1)





max {c1x = c11x1 + c12x2 : (x1 |x2)}
st: A1x1 + A2x2 ≤ b

x ≥ 0

Question 6.2 Suppose someone gives you a proposed
solution x∗ to problem P 2. Develop an “easy” way to test
that x∗ is, in fact, the solution to P 2.

Question 6.3 What is the solution to P 2 if c1 = c2. What
happens if c1 is substituted with αc1 + (1− α)c2 for some
0 ≤ α ≤ 1?

6.4 The two-level linear price control
problem

The two-level linear price control problem is another special
case of the general multilevel programming problem. In this
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problem, level two controls the cost coefficients of level one:

(P 2)





max {c2x = c21x1 + c22x2 : (x2)}
st: A2x2 ≤ b2

where x1 solves

(P 1)





max {(x2)tx1 : (x1 |x2)}
st: A1x1 ≤ b1

x1 ≥ 0

In this problem, level two controls the cost coefficients of
level one.

6.5 Properties of S2

Theorem 6.1 Suppose S1 = {x : Ax = b, x ≥ 0} is
bounded. Let

S2 = {x̂ = (x̂1, x̂2) ∈ S1 : c1x̂1 = max{c1x1 : (x1 | x̂2)}}

then the following hold:

(i) S2 ⊆ S1

(ii) Let {yt}`
t=1 be any ` points of S1, such that

x =
∑

t λ`
t=1yt ∈ S2 with λt ≥ 0 and

∑
t λt = 1.

Then λt > 0 implies yt ∈ S2.
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Proof: See Bialas and Karwan [4].

A set S2 ⊆ S1 with the above properties is called a shaving
of S1.

Note 6.2 The following results are due to Wen [19]
(Chapter 2).

• shavings of shavings are shavings.

• shavings can be decomposed into convex sets that are
shavings

• a convex set is always a shaving of itself.

• a relationship between shavings and the
Karush-Kuhn-Tucker conditions for linear programming
problems.

Definition 6.1 Let S ⊆ Rn. A set σ(S) ⊆ S is a shaving of
S if and only if for any y1, y2, . . . , y` ∈ S, and
λ1 ≥ 0, λ2 ≥ 0, . . . , λ` ≥ 0 such that

∑`
t=1 λt = 1 and∑`

t=1 λtyt = x ∈ σ(S), the statement {λi > 0} implies
yi ∈ σ(S).
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The following figures illustrate the notion of a shaving.

y2

y1

x
S

σ(S)

Figure A 
σ(S) is a shaving

y2

y1

x T

τ(T)

Figure B 
τ(T) is not a shaving

The red region, σ(S), in Figure A is a shaving of the set S.
However in Figure B, the point λ1y1 + λ2y2 = x ∈ τ(T ) with
λ1 + λ2 = 1, λ1 > 0, λ2 > 0. But y1 and y2 do not belong to
τ(T ). Hence τ(T ) is not a shaving.

Theorem 6.2 Suppose T = σ(S) is a shaving of S and
τ(T ) is a shaving of T . Let τ ◦ σ denote the composition of
the functions τ and σ. Then τ ◦ σ(S) is a shaving of S.

Proof: Let y1, y2, . . . , y` ∈ S, and λ1 ≥ 0, λ2 ≥ 0, . . . , λ` ≥ 0
such that

∑`
t=1 λt = 1 and

∑`
t=1 λtyt = x ∈ σ(S) = T .

Suppose λi > 0. Since σ(S) is a shaving of S then
yi ∈ σ(S) = T . Since τ(T ) is a shaving of T , yi ∈ T , and
λi > 0 then yi ∈ τ(T ). Therefore yi ∈ τ(σ(S)) so τ ◦ σ(S) is
a shaving of S.

It is easy to prove the following theorem:
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Theorem 6.3 If S is a convex set, the σ(S) = S is a
shaving of S.

Theorem 6.4 Let S ⊆ RN . Let σ(S) be a shaving of S. If x

is an extreme point of σ(S), then x is an extreme point of S.

Proof: See Bialas and Karwan [4].

Corollary 6.1 An optimal solution to the two-level linear
resource control problem (if one exists) occurs at an
extreme point of the constraint set of all variables (S1).

Proof: See Bialas and Karwan [4].

These results were generalized to n-levels by Wen [19].
Using Theorems 6.2 and 6.4, if fk is linear and S1 is a
bounded convex polyhedron then the extreme points of

Sk = Ψk−1Ψk−2 · · ·Ψ2Ψ1(S1)

are extreme points of S1. This justifies the use of extreme
point search procedures to finding the solution to the n-level
linear resource control problem.

6.6 Cooperative Stackelberg games

The multilevel programming problem is actually a
Stackelberg game. Suppose we allowed payers in that
game to form coalitions?
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• which coalitions will tend to form,

• are the coalitions enforceable, and

• what will be the resulting distribution of wealth to each
of the players?

Games in partition function form (see Lucas and Thrall [16]
and Shenoy [17]) provides a framework for answering these
questions.

Definition 6.2 An abstract game is a pair (X,dom) where
X is a set whose members are called outcomes and dom

is a binary relation on X called domination .

Let G = {1, 2, . . . , n} denote the set of n players.

Let P = {R1, R2, . . . , RM} denote a coalition structure
where Ri ∩Rj = Ø for all i 6= j and ∪M

i=1Ri = G.

Let P0 ≡ {{1}, {2}, . . . , {n}} denote the coalition structure
where no coalitions have formed.

Let PG ≡ {G} denote the grand coalition .

Assume that utility is additive and transferable.

Suppose x = (x1, . . . , xn) is the vector of strategies for
players 1, 2, . . . , n.
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Under coalition structure P = {R1, R2, . . . , RM} the value of
coalition Rj is,

f ′Rj
(x) =

∑

i∈Rj

fi(x).

Hence instead of maximizing fi(x), player i ∈ Rj will now
be maximizing f ′Rj

(x).

Let x̂(P) denote the solution to the resulting n-level
optimization problem.

This is the cooperative Stackelberg strategy under coalition
structure P.

Definition 6.3 Suppose that S1 is compact and x̂(P) is
unique. The value of (or payoff to) coalition Rj ∈ P,
denoted by v(Rj ,P), is given by

v(Rj ,P) ≡
∑

i∈Rj

fi(x̂(P)).

Note 6.3 The function v need not be superadditive

Definition 6.4 A solution configuration is a pair (r,P),
where r is an n-dimensional vector (called an imputation )
whose elements ri (i = 1, . . . , n) represent the payoff to
each player i under coalition structure P.

Definition 6.5 A solution configuration (r,P) is a feasible
solution configuration if and only if

∑
i∈R ri ≤ v(R,P) for

all R ∈ P.
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Let Θ be the set of all feasible solution configurations.

Definition 6.6 Let (r,Pr), (s,Ps) ∈ Θ. Then (r,Pr)
dominates (s,Ps) if and only if there exists an nonempty
R ∈ P, such that

ri > si for all i ∈ R and (2)∑

i∈R

ri ≤ v(R,Pr). (3)

We write (r,Pr)dom(s,Ps)

Definition 6.7 The core , C, of an abstract game is the set
of undominated, feasible solution configurations.

Summary

• A model of the formation of coalitions among players in
a Stackelberg game.

• Perfect information

• Coalitions are allowed to form freely.

• For every coalition structure, the order of the players’
actions remains the same.

• Each coalition earns the combined proceeds that each
individual coalition member would have received in the
original Stackelberg game.
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• A player acts for the joint benefit of the members of his
coalition.

6.7 Results

Lemma 6.1 If solution configuration (z,P) ∈ Θ then

n∑

i=1

zi ≤
n∑

i=1

fi(x̂(PG)) = v(G,PG) ≡ V ∗.

Theorem 6.5 If (z,P) ∈ C 6= Ø then
∑n

i=1 zi = V ∗.

Theorem 6.6 The abstract game (Θ,dom) has C = Ø if
there exists coalition structures P1,P2, . . . ,Pm and
coalitions Rj ∈ Pj (j = 1, . . . ,m) with Rj ∩Rk = Ø for all
j 6= k such that

m∑

j=1

v(Rj ,Pj) > V ∗. (4)

Theorem 6.7 If n = 2 then C 6= Ø.

6.8 An Example

Chew’s [14] container game.

Let cij represent the reward to player i if the commodity
controlled by player j is placed in the container.
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Let C = [cij ]

Let xj = the amount of commodity j

Must have

n∑

j=1

xj ≤ 1

xj ≥ 0 for j = 1, . . . , n.

C =




1 0 0

0 1 0

5 0 1


 .

Note that CxT is a vector whose components represent the
earnings to each player.

Chew [14] provides a simple procedure to solve this game.
The algorithm requires c11 > 0.

Step 0: Initialize i=1 and j=1. Go to Step 1.

Step 1: If i = n, stop. The solution is x̂j = 1 and x̂k = 0 for
k 6= j. If i 6= n, then go to Step 2.

Step 2: Set i = i + 1. If cii > cij , then set j = i. Go to Step
1.

If no ties occur in Step 2 (i.e., cii 6= cij) then it can be shown
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that the above algorithm solves the problem (see
Chew [14]).

Consider the three player game of this form with

C = CP0 =




4 1 4

1 0 3

2 5 1


 .

Using P0 = {{1}, {2}, {3}}
Outcome (x1, x2, x3) = (1, 0, 0)
v({1},P0) = 4
v({2},P0) = 1
v({3},P0) = 2. Using P = {{1}, {2, 3}}

CP =




4 1 4

3 5 4

3 5 4




Under P = {{1}, {2, 3}}
Outcome (0, 1, 0)
v({1},P) = 1
v({2, 3},P) = 5. Using PG = {{1, 2, 3}}

CPG
=




7 6 8

7 6 8

7 6 8



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Under PG = {{1, 2, 3}}
Outcome (0, 0, 1)
v({1, 2, 3},PG) = 8.

Note that

v({1},P0) + v({2, 3},P) > v({1, 2, 3},PG).

From Theorem 6.6, we know that the core for this game is
empty.
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