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6 DYNAMIC COOPERATIVE GAMES

6.1 Some introductory examples

Consider the following hierarchical game:
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Federal Government

State Government

Local Government

F

S

L

In this particular example,
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1. The system has interacting players within a hierarchical structure

2. Each player executes his polices after, and with full knowledge of, the deci-
sions of predecessors.

3. Players might form coalitions in order to improve their payoff.

What do we mean by (3)?

For examples (without coalitions) see Cassidy,et al. [12] and Charnes,et al. [13].

Without coalitions:

Payoff to Federal government= gF (F, S, L)
Payoff to State government= gS(F, S, L)
Payoff to Local government= gL(F, S, L)

A coalition structure of{{F, S}, {L}} would result in the players maximizing the
following objective functions:

Payoff to Federal government= gF (F, S, L) + gS(F, S, L)
Payoff to State government= gF (F, S, L) + gS(F, S, L)
Payoff to Local government= gL(F, S, L)

The order of the play remains the same. Only the objectives change.
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Here is a two-player game of the same type, but written in extensive form:

Player F

Player S

�$Q�H[DPSOH�ZLWK�WZR�SOD\HUV���

f p

a b a b

(3,2) (2,1) (7,0) (2,1)

where
f Full funding
p Partial funding

a Projecta
b Projectb

The Stackelberg solution to this game is(f, a) with a payoff of(3, 1). However, if
the players cooperated, and utility was transferable, they could get 7 with strategy
(p, a).

The key element causing this effect is preemption. A dynamic, cooperative model
is needed.

Chew [14] showed that even linear models can exhibit this behaviorandhe devel-
oped a dynamic cooperative game model.
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Solution properties
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6.1.1 Issues

See Bialas and Karwan [4] for details.

1. alternate optimal solutions

2. nonconvex feasible region

Note 6.1. The cause of inadmissible solutions is not the fault of the optimizers,
but, rather, the sequential and preemptive nature of the decision process (i.e., the
“friction of space and time”).

6.2 Multilevel mathematical programming

The non-cooperative model in this section will serve as the foundation for our
cooperative dynamic model. See also Bialas and Karwan [6].

Note 6.2. Some history:Sequential optimization problems arise frequently in
many fields, including economics, operations research, statistics and control theory.
The origin of this class of problems is difficult to trace since it is woven into the
fabric of many scientific disciplines.

For the field of operations research, this topic arose as an extension to linear
programming (see, for example, Bracken and McGill [8] Cassidy,et al. [12],
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Charnes,et al. [13])

In particular, Bracken,et al. [8, 7, 9] define a two-level problem where the con-
straints contain an optimization problem. However, the feasible region of the lower
level planner does not depend on the decision variables to the upper-level planner.
Removing this restriction, Candler and Norton [10] named this class of problems
“multilevel programming.” A number of researchers mathematically characterized
the geometry of this problem and developed solution algorithms (see, for example,
[1, 4, 5, 15]).

For a more complete bibliography, see Vicente and Calamai [18].

Let the decision variable space (Euclideann-space),Rn 3 x = (x1, x2, . . ., xn),
be partitioned amongr levels,

Rnk 3 xk = (xk
1, xk

2, . . ., xk
nk

) for k = 1, . . ., r,

where
∑r

k=1 nk = n. Denote the maximization of a functionf(x) overRn by
varying onlyxk ∈ Rnk given fixedxk+1, xk+2, . . ., xr inRnk+1×Rnk+2×· · ·×Rnr

by
max{f(x) : (xk |xk+1, xk+2, . . ., xr)}.(1)

Note 6.3. The value of expression (1) is a function ofx1, x2, . . ., xk−1.

Let the full set of system constraints for all levels be denoted byS. Then the
problem at the lowest level of the hierarchy, level one, is given by

(P 1)

{
max {f1(x) : (x1 |x2, . . ., xr)}

st: x ∈ S1 = S

Note 6.4. The problem for the level-one decision makerP 1 is simply a (traditional)
mathematical programming problem dependent on the given values ofx2, . . ., xr.
That is,P 1 is a parametric programming problem.

The feasible region,S = S1, is defined as thelevel-one feasible region.The
solutions toP 1 in Rn

1 for each fixedx2, x3, . . ., xr form a set,

S2 = {x̂ ∈ S1 : f1(x̂) = max{f1(x) : (x1 | x̂2, x̂3, . . ., x̂r)}},

called thelevel-two feasible regionover whichf2(x) is then maximized by varying
x2 for fixedx3, x4, . . ., xr.
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Thus the problem at level two is given by

(P 2)

{
max {f2(x) : (x2 |x3, x4, . . ., xr)}

st: x ∈ S2

In general, thelevel-k feasible regionis defined as

Sk = {x̂ ∈ Sk−1 | fk−1(x̂) = max{fk−1(x) : (xk−1 | x̂k, . . ., x̂r)}},

Note thatx̂k−1 is a function of ˆxk, . . ., x̂r. Furthermore, the problem at each level
can be written as

(P k)

{
max {fk(x) : (xk |xk+1, . . ., xr)}

st: x ∈ Sk

which is a function ofxk+1, . . ., xr, and

(P r) : max
x∈Sr

fr(x)

defines the entire problem. This establishes a collection of nested mathematical
programming problems{P 1, . . ., P r}.
Question 6.1. P k depends on givenxk+1, . . ., xr, and onlyxk is varied. But
fk(x) is defined over allx1, . . ., xr. Where are the variablesx1, . . ., xk−1 in
problemP k?

Note that the objective at levelk, fk(x), is defined over the decision space of all
levels. Thus, the level-k planner may have his objective function determined, in
part, by variables controlled at other levels. However, by controllingxk, after
decisions from levelsk +1 tor have been made, levelk may influence the policies
at levelk − 1 and hence all lower levels to improve his own objective function.

6.2.1 A more general definition

See also Bialas and Karwan [5].

Let the vectorx ∈ RN be partitioned as(xa, xb). Then we can define the following
set function over the collection of closed and bounded regionsS ⊂ RN :

Ψf (S) = {x̂ ∈ S : f(x̂) = max{f(x) | (xa | x̂b)}}
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as theset of rational reactionsof f over S. This set is also sometimes called
the inducible region. If for a fixed x̂b there exists a unique ˆxa which maximizes
f(xa, x̂b) over all(xa, x̂b) ∈ S, then there induced a mapping

x̂a = ψf (x̂b)

which provides the rational reaction for each ˆxb, and we can then write

Ψf (S) = S ∩ {(xa, xb) : xa = ψf (xb)}
So if S = S1 is the level-one feasible region, the level-two feasible region is

S2 = Ψf1(S
1)

and the level-k feasible region is

Sk = Ψfk−1(S
k−1)

Note 6.5. Even if S1 is convex,Sk = Ψfk−1(S
k−1) for k ≥ 2 are typically

non-convex sets.

6.2.2 The two-level linear resource control problem

The two-level linear resource control problem is the multilevel programming prob-
lem of the form

max c2x
st: x ∈ S2

where
S2 = {x̂ ∈ S1 : c1x̂ = max{c1x : (x1 | x̂2)}}

and
S1 = S = {x : A1x1 + A2x2 ≤ b, x ≥ 0}

Here, level 2 controlsx2 which, in turn, varies the resource space of level one by
restrictingA1x1 ≤ b−A2x2.

The nested optimization problem can be written as:

(P 2)





max {c2x = c21x1 + c22x2 : (x2)}
wherex1 solves

(P 1)





max {c1x = c11x1 + c12x2 : (x1 |x2)}
st: A1x1 + A2x2 ≤ b

x ≥ 0
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Question 6.2. Suppose someone gives you a proposed solutionx∗ to problem
P 2. Develop an “easy” way to test thatx∗ is, in fact, the solution toP 2.

Question 6.3. What is the solution toP 2 if c1 = c2. What happens ifc1 is
substituted withαc1 + (1− α)c2 for some 0≤ α ≤ 1?

6.2.3 The two-level linear price control problem

The two-level linear price control problem is another special case of the general
multilevel programming problem. In this problem, level two controls the cost
coefficients of level one:

(P 2)





max {c2x = c21x1 + c22x2 : (x2)}
st: A2x2 ≤ b2

wherex1 solves

(P 1)





max {(x2)tx1 : (x1 |x2)}
st: A1x1 ≤ b1

x1 ≥ 0

In this problem, level two controls the cost coefficients of level one.

6.3 Properties of S2

Theorem 6.1. SupposeS1 = {x : Ax = b, x ≥ 0} is bounded. Let

S2 = {x̂ = (x̂1, x̂2) ∈ S1 : c1x̂1 = max{c1x1 : (x1 | x̂2)}}

then the following hold:

(i) S2 ⊆ S1

(ii) Let {yt}`
t=1 be anỳ points ofS1, such thatx =

∑
t λ`

t=1yt ∈ S2

with λt ≥ 0 and
∑

t λt = 1. Thenλt > 0 impliesyt ∈ S2.

Proof: See Bialas and Karwan [4].

Note 6.6. The following results are due to Wen [19] (Chapter 2).

• a setS2 with the above property is called ashavingof S1

• shavings of shavings are shavings.

• shavings can be decomposed into convex sets that are shavings
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• a convex set is always a shaving of itself.

• a relationship between shavings and the Kuhn-Tucker conditions for linear
programming problems.

Definition 6.1. Let S ⊆ Rn. A setσ(S) ⊆ S is a shavingof S if and only if for
anyy1, y2, . . ., y` ∈ S, andλ1 ≥ 0, λ2 ≥ 0, . . ., λ` ≥ 0 such that

∑`
t=1 λt = 1

and
∑`

t=1 λtyt = x ∈ σ(S), the statement{λi > 0} impliesyi ∈ σ(S).

The following figures illustrate the notion of a shaving.

y2

y1

x
S

σ(S)

Figure A 
σ(S) is a shaving

y2

y1

x T

τ(T)

Figure B 
τ(T) is not a shaving

The red region,σ(S), in Figure A is a shaving of the setS. However in Figure B,
the pointλ1y1 + λ2y2 = x ∈ τ(T ) with λ1 + λ2 = 1, λ1 > 0, λ2 > 0. Buty1 and
y2 do not belong toτ(T ). Henceτ(T ) is not a shaving.

Theorem 6.2. SupposeT = σ(S) is a shaving ofS and τ(T ) is a shaving of
T . Let τ ◦ σ denote the composition of the functionsτ andσ. Thenτ ◦ σ(S) is a
shaving ofS.

Proof:Lety1, y2, . . ., y` ∈ S, andλ1 ≥ 0, λ2 ≥ 0, . . ., λ` ≥ 0 such that
∑`

t=1 λt =
1 and

∑`
t=1 λtyt = x ∈ σ(S) = T .

Supposeλi > 0. Sinceσ(S) is a shaving ofS thenyi ∈ σ(S) = T . Sinceτ(T )
is a shaving ofT , yi ∈ T , andλi > 0 thenyi ∈ τ(T ). Thereforeyi ∈ τ(σ(S)) so
τ ◦ σ(S) is a shaving ofS.

It is easy to prove the following theorem:

Theorem 6.3. If S is a convex set, thenσ(S) = S is a shaving ofS.

Theorem 6.4. LetS ⊆ RN . Letσ(S) be a shaving ofS. If x is an extreme point
of σ(S), thenx is an extreme point ofS.
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Proof: See Bialas and Karwan [4].

Corollary 6.1. An optimal solution to the two-level linear resource control
problem (if one exists) occurs at an extreme point of the constraint set of all
variables (S1).

Proof: See Bialas and Karwan [4].

These results were generalized ton-levels by Wen [19]. Using Theorems 6.2 and
6.4, if fk is linear andS1 is a bounded convex polyhedron then the extreme points
of

Sk = Ψfk−1 ◦Ψfk−2 ◦ · · · ◦Ψf2 ◦Ψf1(S
1)

are extreme points ofS1. This justifies the use of extreme point search procedures
to finding the solution to then-level linear resource control problem.

6.4 Cooperative Stackelberg games

This section is based on Chew [14], Bialas and Chew [3], and Bialas [2].

6.4.1 An Illustration

Consider a game with three players, named 1, 2 and 3, each of whom controls an
unlimited quantity of a commodity, with a different commodity for each player.
Their task is to fill a container of unit capacity with amounts of their respective
commodities, never exceeding the capacity of the container. The task of filling will
be performed in a sequential fashion, with player 3 (the player at the “top” of the
hierarchy) taking his turn first. A player cannot remove a commodity placed in the
container by a previous player.

At the end of the sequence, a referee pays each player one dollar (or fraction,
thereof) for each unit of his respective commodity which has been placed in the
container. It is easy to see that, since player 3 has preemptive control over the
container, he will fill it completely with his commodity, and collect one dollar.

Suppose, however, that the rules are slightly changed so that, in addition, player 3
could collect five dollars for each unit ofplayer one’scommodity which is placed
in the container. Since player 2 does not receive any benefit from player one’s
commodity, player 2 would fill the container with his own commodity on his turn,
if given the opportunity. This is therational reactionof player 2. For this reason,
player 3 has no choice but to fill the container with his commodity and collect only
one dollar.
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6.4.2 Coalition Formation

In the previous example, there are six dollars available to the three players. Divided
equally, each of the three players could improve their payoffs. However, because
of the sequential and independent nature of the decisions, such a solution cannot
be attained.

The solution to the above problem is, thus, not Pareto optimal (see Chew [14]).
However, as suggested by the example, the formation of a coalition among subsets
of the players could provide a means to achieve Pareto optimality. The members
of each coalition act for the benefit of the coalition as a whole. The question
immediately raised are:

• which coalitions will tend to form,

• are the coalitions enforceable, and

• what will be the resulting distribution of wealth to each of the players?

The game in partition function form (see Lucas and Thrall [16] and Shenoy [17])
provides a framework for answering these questions in this Stackelberg setting.

Definition 6.2. An abstract gameis a pair (X,dom) whereX is a set whose
members are calledoutcomesanddom is a binary relation onX calleddomina-
tion.

Let G = {1, 2, . . ., n} denote the set ofn players. LetP = {R1, R2, . . ., RM}
denote a coalition structure or partition ofG into nonempty coalitions, where
Ri ∩Rj = Ø for all i 6= j and∪M

i=1Ri = G.

Let P0 ≡ {{1}, {2}, . . ., {n}} denote the coalition structure where no coalitions
have formed and letPG ≡ {G} denote thegrand coalition.

ConsiderP = {R1, R2, . . ., RM}, an arbitrary coalition structure. Assume that
utility is additive and transferable. As a result of the coalition formation, the
objective function of each player in coalitionRj becomes,

f ′Rj
(x) =

∑

i∈Rj

fi(x).

Although the sequence of the players’ decisions has not changed, their objective
functions have. LetR(i) denote the unique coalitionRj ∈ P such that player
i ∈ Rj . Instead of maximizingfi(x), playeri will now be maximizingf ′R(i)(x).
Let x̂(P) denote the solution to the resultingn-level optimization problem.
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Definition 6.3. Suppose thatS1 is compact and̂x(P) is unique. The value of (or
payoff to) coalitionRj ∈ P, denoted byv(Rj ,P), is given by

v(Rj ,P) ≡
∑

i∈Rj

fi(x̂(P)).

Note 6.7. The functionv need not be superadditive. Hence, one must be careful
when applying some of the traditional game theory results which require superad-
ditivity to this class of problems.

Definition 6.4. A solution configuration is a pair (r,P), wherer is an n-
dimensional vector (called animputation ) whose elementsri (i = 1, . . ., n) rep-
resent the payoff to each playeri under coalition structureP.

Definition 6.5. A solution configuration(r,P) is a feasible solution configura-
tion if and only if

∑
i∈R ri ≤ v(R,P) for all R ∈ P.

Let Θ denote the set of all solution configurations which are feasible for the
hierarchical decision-making problem under consideration. We can then define the
binary relationdom, as follows:

Definition 6.6. Let(r,Pr), (s,Ps) ∈ Θ. Then(r,Pr) dominates(s,Ps) denoted
by (r,Pr)dom(s,Ps), if and only if there exists an nonemptyR ∈ P, such that

ri > si for all i ∈ R and(2) ∑

i∈R

ri ≤ v(R,Pr).(3)

Condition (2) implies that each decision maker inR prefers coalition structurePr

to coalition structurePs. Condition (3) ensures thatR is a feasible coalition inPr.
That is,R must not demand more for the imputationr than its valuev(R,Pr).

Definition 6.7. The core, C, of an abstract game is the set of undominated,
feasible solution configurations.

When the core is nonempty, each of its elements represents an enforceable solution
configuration within the hierarchy.

6.4.3 Results
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We have now defined a model of the formation of coalitions among players in a
Stackelberg game. Perfect information is assumed among the players, and coali-
tions are allowed to form freely. No matter which coalitions form, the order of the
players’ actions remains the same. Each coalition earns the combined proceeds that
each individual coalition member would have received in the original Stackelberg
game. Therefore, a player’s rational decision may now be altered because he is
acting for the joint benefit of the members of his coalition.

Using the above model, several results can be obtained regarding the formation
of coalitions among the players. First, the distribution of wealth to any feasible
coalition cannot exceed the value of the grand coalition. This is provided by the
following lemma:

Lemma 6.1. If solution configuration(z,P) ∈ Θ then

n∑

i=1

zi ≤
n∑

i=1

fi(x̂(PG)) = v(G,PG) ≡ V ∗.

Theorem 6.5. If (z,P) ∈ C 6= Ø then
∑n

i=1 zi = V ∗.

It is also possible to construct a simple sufficient condition for the core to be empty.
This is provided in Theorem 6.6.

Theorem 6.6. The abstract game(Θ,dom) hasC = Ø if there exists coalition
structuresP1,P2, . . .,Pm and coalitionsRj ∈ Pj (j = 1, . . .,m) with Rj ∩Rk =
Ø for all j 6= k such that

m∑

j=1

v(Rj ,Pj) > V ∗.(4)

Finally, we can easily show that, in any 2-person game of this type, the core is
always nonempty.

Theorem 6.7. If n = 2 thenC 6= Ø.

6.4.4 Examples and Computations

We will expand on the illustration given in Section 6.4.1. Letcij represent the re-
ward to playeri if the commodity controlled by playerj is placed in the container.
Let C represent the matrix[cij ] and letx be ann-dimensional vector withxj repre-
senting the amount of commodityj placed in the container. Note that

∑n
j=1 xj ≤ 1
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andxj ≥ 0 for j = 1, . . ., n. For the illustration provided in Section 6.4.1,

C =




1 0 0
0 1 0
5 0 1


 .

Note thatCxT is a vector whose components represent the earnings to each player.

Chew [14] provides a simple procedure to solve this game. The algorithm requires
c11 > 0.

Step 0: Initialize i=1 and j=1. Go toStep 1.

Step 1: If i = n, stop. The solution is ˆxj = 1 andx̂k = 0 for k 6= j. If i 6= n,
then go toStep 2.

Step 2: Seti = i + 1. If cii > cij , then setj = i. Go toStep 1.

If no ties occur inStep 2(i.e., cii 6= cij) then it can be shown that the above
algorithm solves the problem (see Chew [14]).

Example 6.1. Consider the three player game of this form with

C = CP0 =




10 4 0
0 1 1
1 4 3


 .

With coalition structureP0 = {{1}, {2}, {3}}, the solution is(x1, x2, x3) =
(0, 1, 0)and the coalition values arev({1},P0) = 4,v({2},P0) = 1 andv({3},P0) =
4.

Consider coalition structureP = {{1, 2}, {3}}, The payoff matrix becomes

CP =




10 5 1
10 5 1
1 4 3




and a solution of(0, 0, 1). The values of the coalitions in this case arev({1, 2},P) =
1 andv({3},P) = 3.

Note that coalition structureP is not superadditive since

v({1},P0) + v({2},P0) > v({1, 2},P).
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When Players 1 and 2 do not cooperate, Player 2 fills the container with a benefit
of 4 to Player 3. Suppose the bottom two players form coalition{1, 2}. Then if
Player 2 is given anemptycontainer, the coalition will have Player 1 fill it with his
commodity, earning 10 for the coalition. So, if Player 3 does not fill the container,
the formation of coalition{1, 2} reduces Player 3’s benefit from 4 to 1. As a result,
Player 3 fills the container himself, and earns 3. The coalition{1, 2} only earns 1
(not 10).

Remember that Chew’s model assumes that all players have full knowledge of
the coalition structure that has formed. Obvious natural extensions of this simple
model would incorporate secret coalitions and delayed coalition formation (i.e.,
changes in the coalition structure while the container is being passed).

Example 6.2. Consider the three player game of this form with

C = CP0 =




4 1 4
1 0 3
2 5 1


 .

With coalition structureP0 = {{1}, {2}, {3}}, the solution is(x1, x2, x3) =
(1, 0, 0)and the coalition values arev({1},P0) = 4,v({2},P0) = 1 andv({3},P0) =
2.

Under the formation of coalition structureP = {{1}, {2, 3}}, the resources of
players 2 and 3 are combined. This yields a payoff matrix of

CP =




4 1 4
3 5 4
3 5 4




and a solution of(0, 1, 0). The values of the coalitions in this case arev({1},P) = 1
andv({2, 3},P) = 5.

Finally, if all of the players join to form the grand coalition,PG, the payoff matrix
becomes

CPG
=




7 6 8
7 6 8
7 6 8




with a solution of(0, 0, 1) andv({1, 2, 3},PG) = 8. Note that

v({1},P0) + v({2, 3},P) > v({1, 2, 3},PG).

From Theorem 6.6, we know that the core for this game is empty.
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