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5 STATIC COOPERATIVE GAMES
5.1 Some introductory examples

Consider a game with three players 1, 2 and 3. Net= {1,2,3} Suppose that
the players can freely form coalitions. In this case, the posstmétion structures
would be

{13421 {3} {{1.2,3}}
{1,253} {{L3h{2}} {{2.3}{1}}
Once the players form their coalition(s), they inform a referee who pays each coali-
tion an amount depending on its membership. To do this, the referee uses the

functionv : 2 — R. CoalitionS receivesy(S). This is a game icharacteristic
function form andw is called thecharacteristic function.

For simple games, we often specify the characteristic function without using brack-
ets and commas. For example,

v(12) = v({1,2}) = 100

The functionv may actually be based on another game or an underlying decision-
making problem.
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An important issue is the division of the game’s proceeds among the players. We

call the vector(zy, z2, ..., zy) of these payoffs aimputation. In many situa-
tions, the outcome of the game can be expressed solely in terms of the resulting
imputation.

Example 5.1. Here is a three-person, constant sum game:

v(123) = 100
v(12) = v(13) = v(23) = 100
v(l)=v(2)=v(3)=0

How much will be given to each player? Consider solutions such as

(21, T2, 73) (130, 190 100}
(1'1, T2, 1’3) = (50, 50, 0)

Example 5.2. This game is similar to Example 5.1.

v(123) = 100
v(12) = v(13) = 100
v(23) =v(1) =v(2) =v(3) =0

Playerl has veto power but if Play@rand PlayeB form a coalition, they can force
Playerl to get nothing from the game. Consider this imputation as a solution:

(z1,22,23) = (5,%.%)

Cooperative games with transferable utility

Cooperative TU (transferable utility) games have the following ingredients:

1. a characteristic function(S) that gives a value to each subsetc N of
players

2. payoff vectors calledmputationof the form (z1, zo, . .., x,) which repre-
sents a realizable distribution of wealth
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3. a preference relation over the set of imputations
4. solution concepts
Global: stable sets

solutions outside of the stable set can be blocked by some
coalition, and nothing in the stable set can be blocked by an-
other member of the stable set.

Local: bargaining sets

any objection to an element of a bargaining set has a counter-
objection.

Single point: Shapley value

Definition 5.1. A TU game in characteristic function form is a pair (\V, v)
whereN = {1,...,n} is the set of players and : 2V — R is the characteristic
function.

Note 5.1. We often assume either that the game is

superadditive: v(SUT') > v(S) 4+ v(T) forall S,T C N, suchthat N7 = &
or that the game is

cohesive:v(N) > v(S) forall S C N

We define the set dfputationsas

AWw) ={z| X z; =v(N)andz; > v({i}) Vi e N} c RY
If S C N,S # @andz,y € A(v) then we say that dominatesy via S,
(z domg y) if and only if
1. 2, >y foralie S
2. Yieswi < v(S)
If x dominateg, via S, we writex domg .
If x domg y for someS C N then we say that dominatesy and writez dom .

Forz € A(v), we define thelominion of = via S as

Domg z = {y € A(v) |« domg y}
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For anyB C A(v) we define

DomgB = U Domg vy
yeB

and
DomB = U Domr B
TCN

We say that’ C A(v) is astable setif
1. KNDomK =@
2. KUDomK = A(v)

In other words K = A(v) — DomK

Thecoreis defined as

C={r e AW)| Yieqzi >v(S)VS C N}

Note 5.2. If the game is cohesive, the core is the set of undominated imputations.

Theorem 5.1. The core of a cooperative TU gani&/, v) has the following
properties:

1. The coreC is an intersection of half spaces.

2. If stable setd{, exist, therC c N, K,

3. (NaKy)NDomC =D
Note 5.3. For some games (e.g., constant sum games) the core is empty.
As an example consider the following constant sum game With 3:

v(123) = 1
v( ) v(13) ( 3)=1

The set of imputations is

A(v) = {x = (1,29, 23) | x1 + 2 + 3 = 1 andx; > 0fori =1,2,3}
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This set can be illustrated as a subsetiras follows:

The set of
. . X2
imputations

(0,1,0)

X
(1,0,0)
(0,0,1)
X3
or alternatively, using barycentric coordinates
The set of imputations
using barycentric coordinates
x=1
X= (X% %)
X, =1 X, =0 X =1




For an interior pointr we get
Domyy o3z = A(v) N {y |51 < 1 andys < z2}
The set of
imputations %2
Dom,, ,,x
{1.2) (0,1’0)
x/\
(1,0,0)
(010,1/)////
X3
X
Domﬂ_z)x
X3
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And for all two-player coalitions we obtain

Question 5.1. Prove that

1) DomyA(v) = @
A3) C = @

Note that (1) and (2) are general statements, while (3) is true for this particular
game.

Now consider the set
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and note that the setSomy; 5y (3, 3.0), Domy; 31 (3,0, 1), and Domy, 33 (0,3, 3)
can be illustrated as follows:

X3
Domy, 5, (M,1,,0)

Domy, 4, (4,0, ¥,)

(t1,,0,17,)




(0,4,,1,)

Domy, 5 (0,4,,%,)

We will let you verify that
1. KNDomK =@
2. KUDomK = A(v)

so thatK is a stable set.

Question 5.2. There are more stable sets (an uncountable collection). Find them,
and show that, for this example,

NaKo = @
UaKe = A(v)

Now, let's look at the veto game:

v(123) = 1
v(12) = v(13) = 1
v(23) =v(1) =v(2) =v(3) =0
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This game has a core @t, 0, 0) as shown in the following diagram:

X3 /4 X

Core. . (1,0,0)

Question 5.3. Verify that any continuous curve frothto the surfaces +z3 = 1
with a Lipshitz condition o880° or less is a stable set.

A stable set

X3 /4 X

Core. . (1,0,0)
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Note that

NaKo = C
UaKs = A(v)

5.3 Nomenclature

Much of this section is from Willick [13].

5.3.1 Coalition structures

A coalition structureis any partition of the player set into coalitions L&t =
{1,2,...,n} denote the set of players.

Definition 5.2. A coalition structure, P, is a partition of N into non-empty sets
such thatP = {Ry, Ry, ..., Ry} whereR; N R; = @for all i#j andUuM | R; =
N.

5.3.2 Partition function form

Let Py = {{1},{2},...,{n}} denote the singleton coalition structure. The coali-
tion containing all playersV is called thegrand coalition The coalition structure
Py = {N} is called thegrand coalition structure

In partition function form gamesghe value of a coalition$, can depend on the
coalition arrangement of players ¥ — S (See Lucas and Thrall [11]).

Definition 5.3. The gamé N, v) is an-person game in partition function form
if v(.S, P) is areal valued function which assigns a number to each coalBienP
for every coalition structuréP.

5.3.3 Superadditivity

A game is superadditive if(S U T) > v(S) + v(T) for all S,T C N such that
SNT =@.

Most non-superadditive games can be mapped into superadditive games. The fol-
lowing reason is often given: Suppose there exist disjoint coalittband T such
that

v(SUT) <v(S)+v(T)
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ThenS andT could secretly form the coalitiof U T" and collect the value(S) +
v(T'). The coalitionS U T would then divide the amount among its total member-
ship.

Definition 5.4. The gamev is said to be thesuperadditive coverof the game.
if forall P C N,

whereP}, be a partition ofP.
Note 5.4. Py, is a coalition structure restricted to memberg-of

Note 5.5. A problem with using a superadditive cover is that it requires the ingre-
dient of secrecy. Yet all of the players are assumed to have perfect information.

It also requires a dynamic implementation process. The players need to first decide
on their secret alliance, then collect the payoff$'andT individually, and finally

divide the proceeds asU T'. But characteristic function form games are assumed

to be static.

Example 5.3. Consider this three-person game:

u(123) = 1

u(12) = u(13) = u(23) =1
u(2)=u(3)=0

u(l) =5

v(123) = 6
v(12) =5
v(13) =5
v(23) =1
v(2)=v(3)=0
v(l)=5

We can often relax the requirement of superadditivty and assume only that the grand
coalition obtains a value at least as great as the sum of the values of any partition
of the grand coalition. Such games are calletiesive
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Definition 5.5. A characteristic function game is said to behesiveif

v(N) = max Z v(P).

There are important examples of cohesive games. For instance, we will see later
that some models of hierarchical organizations produce cohesive games that are not
superadditive.

5.3.4 Essential games

Definition 5.6. A game isessentialif

> v({i}) <w(N)

ieN
A game ignessentialif

> v({i}) = o)

iEN

Note 5.6. If 3 ;cnyv(i) > v(N) thenA(v) = @. If 3,cyv(i) = v(IV) then
A(v) = {(v(1),v(2), ..., v(n))}
5.3.5 Constant sum games

Definition 5.7. A game is aonstant sum gamef

v(S)+v(N—-S)=v(N) VSCN

5.3.6 Strategic equivalence

Definition 5.8. Two gameg N, v;) and (N, v;) are strategically equivalentif
and only if there exist > 0 and scalars:y, . . ., a,, such that

v1(S) = cva(9) —i—ZCLi YMCN

1€S

Properties of strategic equivalence:
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5.3.7

1. It's a linear transformation
2. It's an equivalence relation
o reflexive
e symmetric
e transitive
Hence it partitions the set of games into equivalence classes.
3. It's an isomorphism with respect tiom on A(v2) — A(v1). So, strategic

equivalence preserves important solution concepts.

Normalization
Definition 5.9. A game(N,v) isin (0, 1) normal form if

o(N) = 1
v({i}) = 0 VieN

The setA(v) for a game in0, 1) normal form is a “probability simplex.”

Suppose a game is {9, 1) normal form and superadditive, ther< v(.S) < 1 for
allS C N.

An essential gaméN, «) can be converted t@, 1) normal form by using

u(S) = Yies u({i})
u(N) = Zienu{i})

Note that the denominator must be positive for any essential game).

v(S) =

Note 5.7. For N = 3 a game in0, 1) normal form can be completely defined by
specifying(v(12), v(13),v(23)).

Question 5.4. Show thatC # @ for any three-perso(0, 1) normal form game
with
v(12) +v(13) +v(23) < 2
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Here’s an examplé:

v(12) + v(13) + v(23) < 2
X

Dom,, .,C
X, +%,=V(12) A{ -

/ \ +X,=
v X+ Xg v(23)
Co?e C

|

X3 X

Dom,, ,C

X+ X,=V(13) Dl &

Show that stable sets are of the following form:

v(12) + v(13) + v(23) < 2

X,
v \
Stable set

/

2My thanks to Ling Wang for her suggestions on this section.
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Produce similar diagrams for the cagg2) + v(13) 4+ v(23) > 2.
IsC = @ forv(12) + v(13) + v(23) = 2?
5.4 Garbage game

There areN players. Each player produces one bag of garbage and dumps it in
another’s yard. The payoff for any player is

—1 x (the number of bags in his yard
We get

v(N) = —-n
v(M) = |M|—n for|M|<n
We haveC = @ whenn > 2. To show this, note that € C implies

Y wzmizoN-{j})=-1 VjeN
iEN—{j}

Summing over alj € N,

(n—1) Z x;, > —-n
1EN
(n—1v(N) > —-n
(n-1)(-n) > -n
n < 2

5.5 Pollution game

There aren factories around a lake.

Input water is free, but if the lake is dirty, a factory may need to pay to clean the
water. If k factories pollute the lake, the cost to a factory to clean the incoming
water iskc.

Output water is dirty, but a factory might pay to treat the effluent at a cdst of

Assume) < ¢ < b < ne.
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If a coalition M forms, all of it's members could agree to pollute with a payoff of
|M|(—nc). Or, all of it's members could agree to clean the water with a payoff of
|M|(—(n —|M])c) — |M|b. Hence,

o(M) = max{{[M[(=nc)}, {{M|(=(n — [M]|)c) — |M|b}} for M C N
v(N) = max{{fn%},{fnb}}

Question 5.5. Show thatC # @ andz = (-b,...,—b) € C.

5.6 Balanced sets and the core

The presentation in this section is based on Owen [9]

The coreC can be defined as the setof @i, ..., z,) € A(V) C R" such that
Z r;=x(N) = v»(N) and
ieN
Yai=ax(S) > v(S) vSe2V

i€S

If we further define amdditive set functionz(-) as any function such that

r:2V SR
z(S) =Y =({i})
€S

we get the following, equivalent, definition of a core:

Definition 5.10. The coreC of a game(N, v) is the set of additive : 2V — R
such that

z(N) =v(N)
z(S)>wv

We would like to characterize those characteristic functiofe@ which the core is
nonempty.

Note thatC # @ if and only if the linear programming problem

. . 4
min 2z =) ;. 1%;

) st: Yiegxi>v(S) VSCN
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has a minimum* < v(N).

Consider the dual to the above linear programming problem (4). That is,

max Y yso(S) = g

SCN
(5) st Y ws = 1 VieN
S3i

Ys > 0 VSCN

Note that both the linear program (4) and its dual (5) are always feasible. So
min z = max q

by the duality theorem. Hence, the core is nonempty if and only if
max q < v(N)

This leads to the following:

Theorem 5.2. A necessary and sufficient condition for the gaiyev) to have
C # @D is that for every nonnegative vectQys)q -, satisfying

Zyszl Vi

NEY

we have

> ysv(S) <u(N)

SCN

To make this more useful, we introduce the concept bakanced collectiorof
coalitions.

Definition 5.11. B c 2V is balancedif there existg/g € R with y5 > 0 for all
S € B such that

Y ys=1 VieN
S3i

y is called thebalancing vector (or weight vector) for3. The individualys's are
calledbalancing coefficients

Example 5.4. SupposeV = {1,2,3}
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B = {{1},{2},{3}} is a balanced collection witly;;} = 1, y(oy = 1, andy;s, =
1.

B = {{1,2},{3}} is a balanced collection Withy; 93 = 1 andy sy = 1.

B = {{1,2},{1,3},{2,3}} is a balanced collection with; o, = 3, {13} = 3.
andy{2,3} = %

Theorem 5.3. The union of balanced collections is balanced.

Lemma 5.1. Let B; and By be balanced collections such th&f C By but
By # Bs. Then there exists a balanced collecti&n# B> such that3sUB; = Bs.

The above lemma leads us to define the following:

Definition 5.12. A minimal balanced collectionis a balanced collection for
which no proper subcollection is balanced.

Theorem 5.4. Any balanced collection can be written as the union of minimal
balanced collections.

Theorem 5.5. Any balanced collection has a unique balancing vector if and only
if it is @ minimal balanced collection.

Theorem 5.6. Each extreme point of the polyhedron for the dual linear program-
ming problem (5) is the balancing vector of a minimal balanced collection.

Corollary 5.1. A minimal balanced collection has at messets.
The result is the following theorem:

Theorem 5.7. (Shapley-Bondareva)he core is nonempty if and only if for every
minimal balanced collectioB8 with balancing coefficient§;s)scz we have

v(N) =) ysv(S)

seB

Example 5.5. Let N = {1,2,3}. Besides the partitions, such &fl, 2}, {3} },
there is only one other minimal balanced collection, namely,

B = {{17 2}’ {17 3}7 {Qa 3}}

with
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Therefore a three-person gari€, v) has a nonempty core if and only if

sv({1,2}) + u({1,3}) + 50({2,3}) < w(N)
v({1,2}) +v({1,3}) + v({2,3}) < 2v(N)

Question 5.6. Use the above result and reconsider Question 5.4 on page 5-14.
Question 5.7. Suppose we are giver(S) for all S # N. What is the smallest
value ofv (V) such thatC # @?

5.7 The Shapley value

Much of this section is from Yang [14].

Definition 5.13. A carrier for a game(V,v) is a coalitonT" C N such that
v(S) <v(SNT)foranyS C N.

The above definition is slightly different from the one given by Shapley [10]. Shap-
ley usesv(S) = v(S NT)instead ofu(S) < v(S NT). However, when the game
(N, v) is superadditive, Shapley’s definition and Yang'’s definition are equivalent.

A carrier is a group of players with the ability to benefit the coalitions they join. A
coalition can remove any of its members who do not belong to the carrier and get
the same, or greater value.

LetII(V) denote the set of all permutations 8h that is, the set of all one-to-one
mappings fromV onto itself.

Definition 5.14. (Owen [9])Let (N, v) be ann-person game, and let € TI(N).
Then, the gaméN, 7v) is defined as the gan{év, u), such that

u({m(in), m(iz), ..., (i) }) = v(5)

for any coalitionS = {i1, 42, ... ,45}-

Definition 5.15. (Friedman [3])Let (V, v) be ann-person game. Theaarginal
value, cs(v), for coalition S C N is given by

cry(v) = v({i})
forall 7 € N, and

cs(v) =v(S) — Z cr(v)

LcS
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forall S C N with |S| > 2.

The marginal value of can also be computed by using the formula

cs(v) = > (=11 (D).

LcS
5.7.1 The Shapley axioms

Let ¢(v) = (¢1(v), p2(v),...,Pn(v)) be ann-dimensional vector satisfying the
following three axioms:

Axiom S 1. (Symmetry)For eachr € II(N), ¢r(;)(7v) = ¢i(v).
Axiom S 2. (Efficiency)For each carrierC of (N, v)

> 9i(v) =v(0).
ieC
Axiom S 3. (Law of Aggregation)or any two games$N, v) and (IV, w)
P(v+w) = d(v) + d(w).

Theorem 5.8. (Shapley [10])or any superadditive gaméV, v) there is a unique

vector of valuesp(v) = (¢1(v),...,¢n(v)) satisfying the above three axioms.
Moreover, for each playerthis value is given by

1
(6) ¢i(v) = > TS\CS(U)

SCN
S3i

Note 5.8. The Shapley value can be equivalently written [9] as

@ o= 3 (HEEEEE ) - or - g

|
o n!
T>1%

This formula can be interpreted as follows: Suppog®ayers arrive one after the
other into a room that will eventually contain the grand coalition. Consider all
possible sequencing arrangements ofithayers. Suppose that any sequence can
occur with probability%. If Playeri arrives and finds coalitio’ — {i} already in

the room, his contribution to the coalitioni$T") — v(T — {i}). The Shapley value

is the expected value of the contribution of Player
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5.8 A generalization of the Shapley value

Suppose we introduce the concept of taxation (or resource redistribution) and re-
lax just one of the axioms. Yang [14], has shown that the Shapley value and the

egalitarian value

v(N)

&) (v) = Vie N

are then the extremes of an entire family of values for all cohesive (not necessarily
superadditive) games.

Axiom Y 1. (Symmetry)For eachr € II(NV), ¢ ;) (mv) = ¥;(v).
Axiom Y 2. (Rationing)For each carrierC' of (N, v)

3 i(v) = g(C)o(C) with 1€l < g(C) < 1.
icC

Axiom Y 3. (Law of Aggregation}or any two game$N, v) and (N, w)

P(v+w) = ¥(v) + P (w).

Note that Yang only modifies the second axiom. The functigfi) is called the
rationing function It can be any real-valued function defined on attributes of the
carrierC with range{%, 1]. If the game(V, v) is superadditive, thep(C) = 1
yields Shapley’s original axioms.

A particular choice of the rationing functigr{C') produces a convex combination
between the egalitarian value and the Shapley value M. et {1,...,n} and let
¢ = |C| for C C N. Given the value of the parameterc [1 1] consider the
real-valued function
n—c)r+(c—1
§(C) = gle,r) = L= r D),

n—1

The functiong(C') specifies the distribution of revenue among the players of a
game.

Note that this function can be rewritten as

gle,r)=1—(1—-7) (n—c).

n—1
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For games with a large number of players,
Jim_g(c,r) =7 € (0,1]
so that(1 — r) can be regarded as a “tax rate” on carriers.

This results in the following theorefh:

Theorem 5.9. Let(V,v) be a cohesive-person cooperative transferable utility
game. For eachr € [1,1], there exists a unique value, ,(v), for each Player
satisfying the three axioms with rationing function
n—c)r+(c—1
J(C) = (=t le=1)

n—1

Moreover, this unigue value is given by

) in(0) = (1= p)i(v) + p”(nN) Vie N

—nr

wherep = n T € (0,1).

Note that the rationing function can be writtein terms ofp € (0,1) as
C
gle,p) =p+(1-p)~
Example 5.6. Consider a two-person game with

o({1}) =1, v({2}) =0, v({1,2})=2

Player 2 can contributeto a coalition with Player 1. But, Player 1 can geain his
own, leaving Player 2 with nothing.

The family of values is
W (v) = (; +r,g _ r>
for 1 < r < 1. The Shapley value (with = 1) is (g %).
Example 5.7. Consider a modification of the above game in Example (5.6) with
o({1}) =1, v({2}) =0, o({1,2})=1

3We are indebted to an anonymous reviewer for the simplified version of this theorem.
4Once again, our thanks to the same anonymous reviewer for this observation.
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In this case, Player 2 is a dummy player.

The family of values is
Ur(v) = (r,1—r)
for 3 <r < 1. The Shapley value (with = 1) is (1, 0).

Example 5.8. This solution approach can be applied to a problem suggested by
Nowak and Radzik [8]. Consider a three-person game where

v({1}) =v({2}) =0, o({3}) =1,
U({lv 2}) = 3.5, U({lv 3}) = U({2’3}) =0,
v({1,2,3}) = 5.
The Shapley value for this game is
o) = (35.5.19)-

Note that the Shapley value will not necessarily satisfy the conditionddfidual
rationality

¢i(v) = v({i})
when the characteristic functianis not superadditive. That is the case here since
¢3(v) <v({3}).
Thesolidarity value(Nowak and Radzik [8]}(v) of this game is

0 =(5.9.%)
and is in the core of N, v).

For everyr € [%, 1], the general form of the family of values is

r(v) = (35+157’ 35 + 157 50—30r)
e 24 7 24 7 24 '

The diagram in the following figure shows the relationship between the family of
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values and the core.

(0,0,5)

CORE

(5,0,0) (0,5,0)

Note that, in the diagram,

120 120 12
_ 5 5 5
B = (37373)'

Neither of these extreme values of the family of values is in the core for this game.

However, those solutions fq% <r< % are elements of the core.

A = (25 25 m) (the Shapley value)

Example 5.9. Nowak and Radzik [8] offer the following example related to
social welfare and income redistribution: Players 1, 2, and 3 are brothers living
together. Players 1 and 2 can make a profit of one unit, that({d, 2}) = 1.
Player 3 is a disabled person and can contribute nothing to any coalition. Therefore,
v({1,2,3}) = 1. Also,v({1,3}) = v({2,3}) = 0 andv({i}) = 0 for every Player

7.

Shapley value of this game is

and for the family of values, we get

14r 1+7r 1—7r
wT(U)_( 4 9 4 9 2 >

forr € [%, 1]. Everyr yields a solution satisfying individual rationality, but, in this
casep-(v) belongs to the core only when it equals the Shapley value ().

5-25



For this particular game, the solidarity value is a member of the family Wh:erg.
Nowak and Radzik propose this single value as a “better” solution for the game
(N, v) than its Shapley value. They suggest that it could be used to include subjec-
tive social or psychological aspects in a cooperative game.

Question 5.8. Suppose gam@V, v) has core® # . Let

F = {¢r(v)|

<r<1}

SN

denote the set of Yang'’s values when using rationing fungfienr-). Under what
conditions willC N F # @?
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