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5 STATIC COOPERATIVE GAMES

5.1 Some introductory examples

Consider a game with three players 1, 2 and 3. LetN = {1, 2, 3} Suppose that
the players can freely form coalitions. In this case, the possiblecoalition structures
would be

{{1}, {2}, {3}} {{1, 2, 3}}
{{1, 2}, {3}} {{1, 3}, {2}} {{2, 3}, {1}}

Once the players form their coalition(s), they inform a referee who pays each coali-
tion an amount depending on its membership. To do this, the referee uses the
functionv : 2N → R. CoalitionS receivesv(S). This is a game incharacteristic
function form andv is called thecharacteristic function.

For simple games, we often specify the characteristic function without using brack-
ets and commas. For example,

v(12) ≡ v({1, 2}) = 100

The functionv may actually be based on another game or an underlying decision-
making problem.

1Department of Industrial Engineering, University at Buffalo, 342 Bell Hall, Box 602050, Buf-
falo, NY 14260-2050 USA;E-mail: bialas@buffalo.edu;Web: http://www.acsu.buffalo.edu/˜bialas.
Copyright c© MMV Wayne F. Bialas. All Rights Reserved. Duplication of this work is prohibited
without written permission. This document produced March 23, 2005 at 11:50 am.

2Much of the material for this section has been cultivated from the lecture notes of Louis J. Billera
and William F. Lucas. The errors and omissions are mine.
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An important issue is the division of the game’s proceeds among the players. We
call the vector(x1, x2, . . . , xN ) of these payoffs animputation . In many situa-
tions, the outcome of the game can be expressed solely in terms of the resulting
imputation.

Example 5.1. Here is a three-person, constant sum game:

v(123) = 100
v(12) = v(13) = v(23) = 100
v(1) = v(2) = v(3) = 0

How much will be given to each player? Consider solutions such as

(x1, x2, x3) = (100
3 , 100

3 , 100
3 )

(x1, x2, x3) = (50, 50, 0)

Example 5.2. This game is similar to Example 5.1.

v(123) = 100
v(12) = v(13) = 100
v(23) = v(1) = v(2) = v(3) = 0

Player1 has veto power but if Player2 and Player3 form a coalition, they can force
Player1 to get nothing from the game. Consider this imputation as a solution:

(x1, x2, x3) = (200
3 , 50

3 , 50
3 )

5.2 Cooperative games with transferable utility

Cooperative TU (transferable utility) games have the following ingredients:

1. a characteristic functionv(S) that gives a value to each subsetS ⊂ N of
players

2. payoff vectors calledimputationof the form(x1, x2, . . . , xn) which repre-
sents a realizable distribution of wealth
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3. a preference relation over the set of imputations

4. solution concepts

Global: stable sets

solutions outside of the stable set can be blocked by some
coalition, and nothing in the stable set can be blocked by an-
other member of the stable set.

Local: bargaining sets

any objection to an element of a bargaining set has a counter-
objection.

Single point: Shapley value

Definition 5.1. A TU game in characteristic function form is a pair (N, v)
whereN = {1, . . . , n} is the set of players andv : 2N → R is the characteristic
function.

Note 5.1. We often assume either that the game is

superadditive: v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ⊆ N , such thatS ∩ T = Ø

or that the game is

cohesive: v(N) ≥ v(S) for all S ⊆ N

We define the set ofimputationsas

A(v) = {x | ∑n
i=1 xi = v(N) andxi ≥ v({i}) ∀ i ∈ N} ⊂ RN

If S ⊆ N , S 6= Ø andx, y ∈ A(v) then we say thatx dominates y via S,
(x domS y) if and only if

1. xi > yi for all i ∈ S

2.
∑

i∈S xi ≤ v(S)

If x dominatesy via S, we writex domS y.

If x domS y for someS ⊆ N then we say thatx dominatesy and writex dom y.

Forx ∈ A(v), we define thedominion of x via S as

DomS x ≡ {y ∈ A(v) |x domS y}
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For anyB ⊆ A(v) we define

DomSB ≡
⋃

y∈B

DomS y

and
DomB ≡

⋃

T⊆N

DomT B

We say thatK ⊂ A(v) is astable setif

1. K ∩ DomK = Ø

2. K ∪ DomK = A(v)

In other words,K = A(v)− DomK

Thecore is defined as

C ≡ {x ∈ A(v) | ∑
i∈S xi ≥ v(S) ∀S ⊂ N}

Note 5.2. If the game is cohesive, the core is the set of undominated imputations.

Theorem 5.1. The core of a cooperative TU game(N, v) has the following
properties:

1. The coreC is an intersection of half spaces.

2. If stable setsKα exist, thenC ⊂ ∩αKα

3. (∩αKα) ∩ DomC = Ø

Note 5.3. For some games (e.g., constant sum games) the core is empty.

As an example consider the following constant sum game withN = 3:

v(123) = 1
v(12) = v(13) = v(23) = 1
v(1) = v(2) = v(3) = 0

The set of imputations is

A(v) = {x = (x1, x2, x3) |x1 + x2 + x3 = 1 andxi ≥ 0 for i = 1, 2, 3}
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This set can be illustrated as a subset inR3 as follows:

x3

x1

x2

(0,0,1)

(0,1,0)

(1,0,0)

The set of
imputations 

or alternatively, using barycentric coordinates

The set of imputations
using barycentric coordinates 

x2 = 1

x1 = 1x3 = 1

x 1
= 

0 x
3 = 0

x2 = 0

x = (x1 ,x2 ,x3 )
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For an interior pointx we get

Dom{1,2}x = A(v) ∩ {y | y1 < x1 andy2 < x2}

x3

x1

x2

(0,0,1)

(0,1,0)

(1,0,0)

The set of
imputations
Dom{1.2}x

x

x2

x3 x1

Dom{1.2}x

x

5-6



And for all two-player coalitions we obtain

x2

x3 x1

Dom{1.2}x

x

Dom{1.3}x

Dom{2.3}x

Question 5.1. Prove that

DomN A(v) = Ø(1)

Dom{i}A(v) = Ø ∀ i(2)

C = Ø(3)

Note that (1) and (2) are general statements, while (3) is true for this particular
game.

Now consider the set

K = {(1
2 , 1

2 , 0), (1
2 , 0, 1

2), (0, 1
2 , 1

2)}
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and note that the setsDom{1,2} (1
2 , 1

2 , 0), Dom{1,3} (1
2 , 0, 1

2), and Dom{2,3} (0, 1
2 , 1

2)
can be illustrated as follows:

x2

x3 x1

Dom{1.2} (
1/2,

1/2,0)

(1/2, 
1/2,0)

x2

x3 x1

Dom{1.3} (
1/2,0, 1/2)

(1/2,0,1/2)
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x2

x3 x1

Dom{2.3} (0,1/2,
1/2)

(0,1/2,
1/2)

We will let you verify that

1. K ∩ DomK = Ø

2. K ∪ DomK = A(v)

so thatK is a stable set.

Question 5.2. There are more stable sets (an uncountable collection). Find them,
and show that, for this example,

∩αKα = Ø

∪αKα = A(v)

Now, let’s look at the veto game:

v(123) = 1
v(12) = v(13) = 1
v(23) = v(1) = v(2) = v(3) = 0
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This game has a core at(1, 0, 0) as shown in the following diagram:

x2

x3 x1

Dom{1.2}x

x

Dom{1,3}x

Core�3-(1,0,0)

Question 5.3. Verify that any continuous curve fromC to the surfacex2+x3 = 1
with a Lipshitz condition of30◦ or less is a stable set.

x2

x3 x1

x

Core 3-(1,0,0)

A stable set 
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Note that

∩αKα = C
∪αKα = A(v)

5.3 Nomenclature

Much of this section is from Willick [13].

5.3.1 Coalition structures

A coalition structureis any partition of the player set into coalitions LetN =
{1, 2, . . . , n} denote the set ofn players.

Definition 5.2. A coalition structure, P, is a partition ofN into non-empty sets
such thatP = {R1, R2, . . . , RM} whereRi ∩ Rj = Ø for all i 6=j and∪M

i=1Ri =
N .

5.3.2 Partition function form

Let P0 ≡ {{1}, {2}, . . . , {n}} denote the singleton coalition structure. The coali-
tion containing all playersN is called thegrand coalition. The coalition structure
PN ≡ {N} is called thegrand coalition structure.

In partition function form games, the value of a coalition,S, can depend on the
coalition arrangement of players inN − S (See Lucas and Thrall [11]).

Definition 5.3. The game(N, v) is an-person game in partition function form
if v(S,P) is a real valued function which assigns a number to each coalitionS ∈ P
for every coalition structureP.

5.3.3 Superadditivity

A game is superadditive ifv(S ∪ T ) ≥ v(S) + v(T ) for all S, T ⊆ N such that
S ∩ T = Ø.

Most non-superadditive games can be mapped into superadditive games. The fol-
lowing reason is often given: Suppose there exist disjoint coalitionsS andT such
that

v(S ∪ T ) < v(S) + v(T )
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ThenS andT could secretly form the coalitionS ∪T and collect the valuev(S) +
v(T ). The coalitionS ∪ T would then divide the amount among its total member-
ship.

Definition 5.4. The gamev is said to be thesuperadditive coverof the gameu
if for all P ⊆ N ,

v(P ) = max
P∗P

∑

R∈P∗P
u(R)

whereP∗P be a partition ofP .

Note 5.4. P∗P is a coalition structure restricted to members ofP

Note 5.5. A problem with using a superadditive cover is that it requires the ingre-
dient of secrecy. Yet all of the players are assumed to have perfect information.

It also requires a dynamic implementation process. The players need to first decide
on their secret alliance, then collect the payoffs asS andT individually, and finally
divide the proceeds asS ∪ T . But characteristic function form games are assumed
to be static.

Example 5.3. Consider this three-person game:

u(123) = 1
u(12) = u(13) = u(23) = 1
u(2) = u(3) = 0
u(1) = 5

Note that(N, u) is not superadditive. The superadditive cover of(N,u) is

v(123) = 6
v(12) = 5
v(13) = 5
v(23) = 1
v(2) = v(3) = 0
v(1) = 5

We can often relax the requirement of superadditivty and assume only that the grand
coalition obtains a value at least as great as the sum of the values of any partition
of the grand coalition. Such games are calledcohesive.
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Definition 5.5. A characteristic function game is said to becohesiveif

v(N) = max
P

∑

P∈P
v(P ).

There are important examples of cohesive games. For instance, we will see later
that some models of hierarchical organizations produce cohesive games that are not
superadditive.

5.3.4 Essential games

Definition 5.6. A game isessentialif
∑

i∈N

v({i}) < v(N)

A game isinessentialif ∑

i∈N

v({i}) ≥ v(N)

Note 5.6. If
∑

i∈N v(i) > v(N) thenA(v) = Ø. If
∑

i∈N v(i) = v(N) then
A(v) = {(v(1), v(2), . . . , v(n))}

5.3.5 Constant sum games

Definition 5.7. A game is aconstant sum gameif

v(S) + v(N − S) = v(N) ∀S ⊂ N

5.3.6 Strategic equivalence

Definition 5.8. Two games(N, v1) and (N, v2) are strategically equivalent if
and only if there existc > 0 and scalarsa1, . . . , an such that

v1(S) = cv2(S) +
∑

i∈S

ai ∀M ⊆ N

Properties of strategic equivalence:
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1. It’s a linear transformation

2. It’s an equivalence relation

• reflexive

• symmetric

• transitive

Hence it partitions the set of games into equivalence classes.

3. It’s an isomorphism with respect todom on A(v2) → A(v1). So, strategic
equivalence preserves important solution concepts.

5.3.7 Normalization

Definition 5.9. A game(N, v) is in (0, 1) normal form if

v(N) = 1
v({i}) = 0 ∀ i ∈ N

The setA(v) for a game in(0, 1) normal form is a “probability simplex.”

Suppose a game is in(0, 1) normal form and superadditive, then0 ≤ v(S) ≤ 1 for
all S ⊆ N .

An essential game(N,u) can be converted to(0, 1) normal form by using

v(S) =
u(S)−∑

i∈S u({i})
u(N)−∑

i∈N u({i})

Note that the denominator must be positive for any essential game(N, u).

Note 5.7. ForN = 3 a game in(0, 1) normal form can be completely defined by
specifying(v(12), v(13), v(23)).

Question 5.4. Show thatC 6= Ø for any three-person(0, 1) normal form game
with

v(12) + v(13) + v(23) < 2
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Here’s an example:2

x2

x3 x1

v(12) + v(13) + v(23) < 2

Dom{1,3}C

Dom{2,3}C

Dom{1,2}C
Core C

x2+x3=v(23)

x1+x2=v(12)

x1+x3=v(13)

Show that stable sets are of the following form:

x2

x3 x1

v(12) + v(13) + v(23) < 2

Stable set

2My thanks to Ling Wang for her suggestions on this section.
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Produce similar diagrams for the casev(12) + v(13) + v(23) > 2.

Is C = Ø for v(12) + v(13) + v(23) = 2?

5.4 Garbage game

There areN players. Each player produces one bag of garbage and dumps it in
another’s yard. The payoff for any player is

−1× (the number of bags in his yard)

We get

v(N) = −n

v(M) = |M | − n for |M | < n

We haveC = Ø whenn > 2. To show this, note thatx ∈ C implies
∑

i∈N−{j}
xi ≥ v(N − {j}) = −1 ∀ j ∈ N

Summing over allj ∈ N ,

(n− 1)
∑

i∈N

xi ≥ −n

(n− 1)v(N) ≥ −n

(n− 1)(−n) ≥ −n

n ≤ 2

5.5 Pollution game

There aren factories around a lake.

Input water is free, but if the lake is dirty, a factory may need to pay to clean the
water. If k factories pollute the lake, the cost to a factory to clean the incoming
water iskc.

Output water is dirty, but a factory might pay to treat the effluent at a cost ofb.

Assume0 < c < b < nc.

5-16



If a coalitionM forms, all of it’s members could agree to pollute with a payoff of
|M |(−nc). Or, all of it’s members could agree to clean the water with a payoff of
|M |(−(n− |M |)c)− |M |b. Hence,

v(M) = max {{|M |(−nc)}, {|M |(−(n− |M |)c)− |M |b}} for M ⊂ N

v(N) = max
{
{−n2c}, {−nb}

}

Question 5.5. Show thatC 6= Ø andx = (−b, . . . ,−b) ∈ C.

5.6 Balanced sets and the core

The presentation in this section is based on Owen [9]

The coreC can be defined as the set of all(x1, . . . , xn) ∈ A(V ) ⊂ Rn such that
∑

i∈N

xi ≡ x(N) = v(N) and

∑

i∈S

xi ≡ x(S) ≥ v(S) ∀S ∈ 2N

If we further define anadditive set functionx(·) as any function such that

x : 2N → R
x(S) =

∑

i∈S

x({i})

we get the following, equivalent, definition of a core:

Definition 5.10. The coreC of a game(N, v) is the set of additivex : 2N → R
such that

x(N) = v(N)
x(S) ≥ v(S) ∀S ⊂ N

We would like to characterize those characteristic functionsv for which the core is
nonempty.

Note thatC 6= Ø if and only if the linear programming problem

min z =
∑n

i=1 xi

st:
∑

i∈S xi ≥ v(S) ∀ S ⊂ N
(4)
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has a minimumz∗ ≤ v(N).

Consider the dual to the above linear programming problem (4). That is,

max
∑

S⊂N

ySv(S) = q

st:
∑

S3i

yS = 1 ∀ i ∈ N

yS ≥ 0 ∀ S ⊂ N

(5)

Note that both the linear program (4) and its dual (5) are always feasible. So

min z = max q

by the duality theorem. Hence, the core is nonempty if and only if

max q ≤ v(N)

This leads to the following:

Theorem 5.2. A necessary and sufficient condition for the game(N, v) to have
C 6= Ø is that for every nonnegative vector(yS)S⊂N satisfying

∑

S3i

yS = 1 ∀ i

we have ∑

S⊂N

ySv(S) ≤ v(N)

To make this more useful, we introduce the concept of abalanced collectionof
coalitions.

Definition 5.11. B ⊂ 2N is balancedif there existsyS ∈ R with yS > 0 for all
S ∈ B such that ∑

S3i

yS = 1 ∀ i ∈ N

y is called thebalancing vector (or weight vector) forB. The individualyS ’s are
calledbalancing coefficients.

Example 5.4. SupposeN = {1, 2, 3}
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B = {{1}, {2}, {3}} is a balanced collection withy{1} = 1, y{2} = 1, andy{3} =
1.

B = {{1, 2}, {3}} is a balanced collection withy{1,2} = 1 andy{3} = 1.

B = {{1, 2}, {1, 3}, {2, 3}} is a balanced collection withy{1,2} = 1
2 , y{1,3} = 1

2 ,
andy{2,3} = 1

2 .

Theorem 5.3. The union of balanced collections is balanced.

Lemma 5.1. Let B1 and B2 be balanced collections such thatB1 ⊂ B2 but
B1 6= B2. Then there exists a balanced collectionB3 6= B2 such thatB3∪B1 = B2.

The above lemma leads us to define the following:

Definition 5.12. A minimal balanced collection is a balanced collection for
which no proper subcollection is balanced.

Theorem 5.4. Any balanced collection can be written as the union of minimal
balanced collections.

Theorem 5.5. Any balanced collection has a unique balancing vector if and only
if it is a minimal balanced collection.

Theorem 5.6. Each extreme point of the polyhedron for the dual linear program-
ming problem (5) is the balancing vector of a minimal balanced collection.

Corollary 5.1. A minimal balanced collection has at mostn sets.

The result is the following theorem:

Theorem 5.7. (Shapley-Bondareva)The core is nonempty if and only if for every
minimal balanced collectionB with balancing coefficients(yS)S∈B we have

v(N) ≥
∑

s∈B
ySv(S)

Example 5.5. Let N = {1, 2, 3}. Besides the partitions, such as{{1, 2}, {3}},
there is only one other minimal balanced collection, namely,

B = {{1, 2}, {1, 3}, {2, 3}}

with
y =

(
1
2 , 1

2 , 1
2

)
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Therefore a three-person game(N, v) has a nonempty core if and only if

1
2v({1, 2}) + 1

2v({1, 3}) + 1
2v({2, 3}) ≤ v(N)

v({1, 2}) + v({1, 3}) + v({2, 3}) ≤ 2v(N)

Question 5.6. Use the above result and reconsider Question 5.4 on page 5-14.

Question 5.7. Suppose we are givenv(S) for all S 6= N . What is the smallest
value ofv(N) such thatC 6= Ø?

5.7 The Shapley value

Much of this section is from Yang [14].

Definition 5.13. A carrier for a game(N, v) is a coalitionT ⊆ N such that
v(S) ≤ v(S ∩ T ) for anyS ⊆ N .

The above definition is slightly different from the one given by Shapley [10]. Shap-
ley usesv(S) = v(S ∩ T ) instead ofv(S) ≤ v(S ∩ T ). However, when the game
(N, v) is superadditive, Shapley’s definition and Yang’s definition are equivalent.

A carrier is a group of players with the ability to benefit the coalitions they join. A
coalition can remove any of its members who do not belong to the carrier and get
the same, or greater value.

Let Π(N) denote the set of all permutations onN , that is, the set of all one-to-one
mappings fromN onto itself.

Definition 5.14. (Owen [9])Let (N, v) be ann-person game, and letπ ∈ Π(N).
Then, the game(N, πv) is defined as the game(N, u), such that

u({π(i1), π(i2), . . . , π(i|S|)}) = v(S)

for any coalitionS = {i1, i2, . . . , i|S|}.

Definition 5.15. (Friedman [3])Let (N, v) be ann-person game. Themarginal
value,cS(v), for coalitionS ⊆ N is given by

c{i}(v) ≡ v({i})
for all i ∈ N , and

cS(v) ≡ v(S)−
∑

L⊂S

cL(v)
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for all S ⊆ N with |S| ≥ 2.

The marginal value ofS can also be computed by using the formula

cS(v) =
∑

L⊂S

(−1)|S|−1v(L).

5.7.1 The Shapley axioms

Let φ(v) = (φ1(v), φ2(v), . . . , φn(v)) be ann-dimensional vector satisfying the
following three axioms:

Axiom S 1. (Symmetry)For eachπ ∈ Π(N), φπ(i)(πv) = φi(v).

Axiom S 2. (Efficiency)For each carrierC of (N, v)
∑

i∈C

φi(v) = v(C).

Axiom S 3. (Law of Aggregation)For any two games(N, v) and(N, w)

φ(v + w) = φ(v) + φ(w).

Theorem 5.8. (Shapley [10])For any superadditive game(N, v) there is a unique
vector of valuesφ(v) = (φ1(v), . . . , φn(v)) satisfying the above three axioms.
Moreover, for each playeri this value is given by

φi(v) =
∑
S⊆N
S3i

1
|S|cS(v)(6)

Note 5.8. The Shapley value can be equivalently written [9] as

φi(v) =
∑
T⊆N
T3i

(
(|T | − 1)!(n− |T |)!

n!

)
[v(T )− v(T − {i})](7)

This formula can be interpreted as follows: Supposen players arrive one after the
other into a room that will eventually contain the grand coalition. Consider all
possible sequencing arrangements of then players. Suppose that any sequence can
occur with probability1

n! . If Playeri arrives and finds coalitionT − {i} already in
the room, his contribution to the coalition isv(T )−v(T −{i}). The Shapley value
is the expected value of the contribution of Playeri.
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5.8 A generalization of the Shapley value

Suppose we introduce the concept of taxation (or resource redistribution) and re-
lax just one of the axioms. Yang [14], has shown that the Shapley value and the
egalitarian value

φ0
i (v) =

v(N)
n

∀ i ∈ N

are then the extremes of an entire family of values for all cohesive (not necessarily
superadditive) games.

Axiom Y 1. (Symmetry)For eachπ ∈ Π(N), ψπ(i)(πv) = ψi(v).

Axiom Y 2. (Rationing)For each carrierC of (N, v)
∑

i∈C

ψi(v) = g(C)v(C) with |C|
n ≤ g(C) ≤ 1.

Axiom Y 3. (Law of Aggregation)For any two games(N, v) and(N, w)

ψ(v + w) = ψ(v) + ψ(w).

Note that Yang only modifies the second axiom. The functiong(C) is called the
rationing function. It can be any real-valued function defined on attributes of the
carrierC with range

[ |C|
n , 1

]
. If the game(N, v) is superadditive, theng(C) = 1

yields Shapley’s original axioms.

A particular choice of the rationing functiong(C) produces a convex combination
between the egalitarian value and the Shapley value. LetN = {1, . . . , n} and let
c ≡ |C| for C ⊆ N . Given the value of the parameterr ∈ [ 1

n , 1] consider the
real-valued function

g(C) ≡ g(c, r) =
(n− c)r + (c− 1)

n− 1
.

The functiong(C) specifies the distribution of revenue among the players of a
game.

Note that this function can be rewritten as

g(c, r) = 1− (1− r)
(

n− c

n− 1

)
.
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For games with a large number of players,

lim
n→∞ g(c, r) = r ∈ (0, 1]

so that(1− r) can be regarded as a “tax rate” on carriers.

This results in the following theorem:3

Theorem 5.9. Let (N, v) be a cohesiven-person cooperative transferable utility
game. For eachr ∈ [ 1

n , 1], there exists a unique value,ψi,r(v), for each Playeri
satisfying the three axioms with rationing function

g(C) =
(n− c)r + (c− 1)

n− 1
.

Moreover, this unique value is given by

ψi,r(v) = (1− p)φi(v) + p
v(N)

n
∀ i ∈ N(8)

wherep =
n− nr

n− 1
∈ (0, 1).

Note that the rationing function can be written4 in terms ofp ∈ (0, 1) as

g(c, p) = p + (1− p)
c

n

Example 5.6. Consider a two-person game with

v({1}) = 1, v({2}) = 0, v({1, 2}) = 2

Player 2 can contribute1 to a coalition with Player 1. But, Player 1 can get1 on his
own, leaving Player 2 with nothing.

The family of values is

ψr(v) =
(

1
2

+ r,
3
2
− r

)

for 1
2 ≤ r ≤ 1. The Shapley value (withr = 1) is

(
3
2 , 1

2

)
.

Example 5.7. Consider a modification of the above game in Example (5.6) with

v({1}) = 1, v({2}) = 0, v({1, 2}) = 1

3We are indebted to an anonymous reviewer for the simplified version of this theorem.
4Once again, our thanks to the same anonymous reviewer for this observation.
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In this case, Player 2 is a dummy player.

The family of values is
ψr(v) = (r, 1− r)

for 1
2 ≤ r ≤ 1. The Shapley value (withr = 1) is (1, 0).

Example 5.8. This solution approach can be applied to a problem suggested by
Nowak and Radzik [8]. Consider a three-person game where

v({1}) = v({2}) = 0, v({3}) = 1,

v({1, 2}) = 3.5, v({1, 3}) = v({2, 3}) = 0,

v({1, 2, 3}) = 5.

The Shapley value for this game is

φ(v) =
(

25
12 , 25

12 , 10
12

)
.

Note that the Shapley value will not necessarily satisfy the condition ofindividual
rationality

φi(v) ≥ v({i})
when the characteristic functionv is not superadditive. That is the case here since
φ3(v) < v({3}).
Thesolidarity value(Nowak and Radzik [8])ξ(v) of this game is

ξ(v) =
(

16
9 , 16

9 , 13
9

)

and is in the core of(N, v).

For everyr ∈ [ 1
n , 1], the general form of the family of values is

ψr(v) =
(

35 + 15r
24

,
35 + 15r

24
,
50− 30r

24

)
.

The diagram in the following figure shows the relationship between the family of
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values and the core.

(0,5,0)(5,0,0)

(0,0,5)

B

A

CORE

Note that, in the diagram,

A =
(

25
12 , 25

12 , 10
12

)
(the Shapley value)

B =
(

5
3 , 5

3 , 5
3

)
.

Neither of these extreme values of the family of values is in the core for this game.
However, those solutions for715 ≤ r ≤ 13

15 are elements of the core.

Example 5.9. Nowak and Radzik [8] offer the following example related to
social welfare and income redistribution: Players 1, 2, and 3 are brothers living
together. Players 1 and 2 can make a profit of one unit, that is,v({1, 2}) = 1.
Player 3 is a disabled person and can contribute nothing to any coalition. Therefore,
v({1, 2, 3}) = 1. Also,v({1, 3}) = v({2, 3}) = 0 andv({i}) = 0 for every Player
i.

Shapley value of this game is

φ(v) =
(

1
2 , 1

2 , 0
)

and for the family of values, we get

ψr(v) =
(

1 + r

4
,
1 + r

4
,
1− r

2

)

for r ∈ [13 , 1]. Everyr yields a solution satisfying individual rationality, but, in this
case,ψr(v) belongs to the core only when it equals the Shapley value (r = 1).
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For this particular game, the solidarity value is a member of the family whenr = 5
9 .

Nowak and Radzik propose this single value as a “better” solution for the game
(N, v) than its Shapley value. They suggest that it could be used to include subjec-
tive social or psychological aspects in a cooperative game.

Question 5.8. Suppose game(N, v) has coreC 6= Ø. Let

F ≡ {ψr(v) | 1
n
≤ r ≤ 1}

denote the set of Yang’s values when using rationing functiong(c, r). Under what
conditions willC ∩ F 6= Ø?
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