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4 UTILITY THEORY

4.1 Introduction

This section is really independent of the field of game theory, and it introduces
concepts that pervade a variety of academic fields. It addresses the issue of quan-
tifying the seemingly nonquantifiable. These include attributes such as quality of
life and aesthetics. Much of this discussion has been borrowed from Keeney and
Raiffa [1]. Other important references include Luce and Raiffa [2], Savage [4], and
von Neumann and Morgenstern [5].

The basic problem of assessing value can be posed as follows: A decision maker
must choose among several alternatives, sayW1,W2, . . .,Wn, where each will
result in a consequence discernible in terms of asingle attribute, sayX. The
decision maker does not know with certainty which consequence will result from
each of the variety of alternatives. We would like to be able to quantify (in some
way) our preferences for each alternative.

The literature on utility theory is extensive, both theoretical and experimental. It
has been the subject of significant criticism and refinement. We will only present
the fundamental ideas here.

4.2 The basic theory

Definition 4.1. Given any two outcomesA and B we write A Â B if A is
preferable toB. We will writeA ' B if A 6Â B andB 6Â A.
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4.2.1 Axioms

The relationsÂ and' must satisfy the following axioms:

1. Given any two outcomesA andB, exactly one of the following must hold:

(a) A Â B

(b) B Â A

(c) A ' B

2. A ' A for all A

3. A ' B impliesB ' A

4. A ' B andB ' C impliesA ' C

5. A Â B andB Â C impliesA Â C

6. A Â B andB ' C impliesA Â C

7. A ' B andB Â C impliesA Â C

4.2.2 What results from the axioms

The axioms provide that' is anequivalence relationand Â produces aweak
partial orderingof the outcomes.

Now assume that
A1 ≺ A2 ≺ · · · ≺ An

Suppose that the decision maker is indifferent to the following two possibilities:

Certainty option: ReceiveAi with probability 1

Risky option:

{
ReceiveAn with probabilityπi

ReceiveA1 with probability(1− πi)

If the decision maker is consistent, thenπn = 1 andπ1 = 0, and furthermore

π1 < π2 < · · · < πn

Hence, theπ’s provide a numerical ranking for theA’s.
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Suppose that the decision maker is asked express his preference for probability
distributions over theAi. That is, consider mixtures,p′ andp′′, of theAi where

p′i ≥ 0
∑n

i=1 p′i = 1

p′′i ≥ 0
∑n

i=1 p′′i = 1

Using theπ’s, we can consider the question of which is better,p′ orp′′, by computing
the following “scores”:

π̄′ =
n∑

i=1

p′iπi

π̄′′ =
n∑

i=1

p′′i πi

We claim that the choice ofp′ versusp′′ should be based on the relative magnitudes
of π̄′ andπ̄′′.

Note 4.1. Suppose we have two outcomesA andB with the probability of getting
each equal top and(1− p), respectively. Denote thelotterybetweenA andB by

Ap⊕B(1− p)

Note that this is not expected value, sinceA andB are not real numbers.

Suppose we choosep′. This implies that we obtainAi with probabilityp′i and this
is indifferent to obtaining

Anπi ⊕A1(1− πi)

with probabilityp′i. Now, sum over alli and consider the quantities

An

n∑

i=1

πip
′
i ⊕A1

n∑

i=1

(1− πi)p′i

' An

n∑

i=1

πip
′
i ⊕A1

(
1−

n∑

i=1

πip
′
i

)

' Anπ̄′ ⊕A1(1− π̄′)

So if π̄′ > π̄′′ then

Anπ̄′ ⊕A1(1− π̄′) Â Anπ̄′′ ⊕A1(1− π̄′′)
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This leads directly to the following. . .

Theorem 4.1. If A Â C Â B and

pA⊕ (1− p)B ' C

then0 < p < 1 andp is unique.

Proof: See Owen [3].

Theorem 4.2. There exists a real-valued functionu(·) such that

1. (Monotonicity)u(A) > u(B) if and only ifA Â B.

2. (Consistency)u(pA⊕ (1− p)B) = pu(A) + (1− p)u(B)

3. the functionu(·) is unique up to a linear transformation. In other
words, ifu andv are utility functions for the same outcomes then
v(A) = αu(A) + β for someα andβ.

Proof: See Owen [3].

Consider a lottery (L) which yields outcomes{Ai}n
i=1 with probabilities{pi}n

i=1.
Then let

Ã = A1p1 ⊕A2p2 ⊕ · · · ⊕Anpn

Because of the properties of utility functions, we have

E[(u(Ã)] =
n∑

i=1

piu(Ai)

Consider
u−1

(
E[(u(Ã)]

)

This is anoutcomethat represents lottery (L)

Suppose we have two utility functionsu1 andu2 with the property that

u−1
1

(
E[(u1(Ã)]

)
' u−1

2

(
E[(u2(Ã)]

)
∀ Ã

Thenu1 andu2 will imply the same preference rankings for any outcomes. If this
is true, we writeu1 ∼ u2. Note that some texts (such as [1]) say thatu1 andu2 are
strategically equivalent.We won’t use that definition, here, because this term has
been used for another property of strategic games.

4-4



4.3 Certainty equivalents

Definition 4.2. A certainty equivalent of lottery (L) is an outcomeÂ such that
the decision maker is indifferent between (L) and the certain outcomêA.

In other words, ifÂ is a certainty equivalent of (L)

u(Â) = E[u(Ã)]

Â ' u−1
(
E[u(Ã)]

)

You will also see the termscash equivalentandlottery selling pricein the literature.

Example 4.1. Suppose outcomes are measured in terms of real numbers, say
A = x. For anya andb > 0

u(x) = a + bx ∼ x

Suppose the decision maker has a lottery described by the probability densityf(x)
then

E[x̃] =
∫

xf(x) dx

Note that
u(x̂) = E[u(x̃)] = E[a + bx̃] = a + bE[x̃]

Takingu−1 of both sides shows that ˆx = E[x̃].

Hence, if the utility function is linear, the certainty equivalent for any lottery is the
expected consequence of that lottery.

Question 4.1. Supposeu(x) = a − be−cx ∼ −e−cx whereb > 0. Suppose the
decision maker is considering a 50-50 lottery yielding eitherx1 or x2. So

E[x̃] =
x1 + x2

2

Find the solution tou(x̂) = E[u(x̃)] to obtaining the certainty equivalent for this
lottery. In other words, solve

−e−cx̂ =
−(e−cx1 + e−cx2)

2

Question 4.2. This is a continuation of Question 4.1. Ifu(x) = −e−cx andx̂ is
the certainty equivalent for the lottery ˜x, show that ˆx+x0 is the certainty equivalent
for the lottery ˜x + x0.
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