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3 N-PERSON GAMES

3.1 N -Person Games in Strategic Form

3.1.1 Basic ideas

We can extend many of the results of the previous chapter for games withN > 2
players.

Let Mi = {1, . . .,mi} denote the set ofmi pure strategies available to Playeri.

Let ni ∈ Mi be the strategy actually selected by Playeri, and letai
n1,n2,...,nN

be the
payoff to Playeri if

Player 1 chooses strategyn1

Player 2 chooses strategyn2
...

PlayerN chooses strategynN

Definition 3.1. The strategies(n∗1, . . ., n∗N ) with n∗i ∈ Mi for all i ∈ N form a
Nash equilibrium solution if

a1
n∗1 ,n∗2 ,...,n∗N

≥ a1
n1,n

∗
2 ,...,n∗N

∀ ni ∈ M1
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MMIII Wayne F. Bialas. All Rights Reserved. Duplication of this work is prohibited without written
permission. This document produced March 10, 2003 at 12:19 pm.
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a2
n∗1 ,n∗2 ,...,n∗N

≥ a2
n∗1 ,n2,...,n∗N

∀ n2 ∈ M2

...

aN
n∗1 ,n∗2 ,...,n∗N

≥ aN
n∗1 ,n∗2 ,...,nN

∀ nN ∈ MN

Definition 3.2. Two N -person games with payoff functionsai
n1,n2,...,nN

and
bi
n1,n2,...,nN

are strategically equivalent if there existsαi > 0 and scalarsβi for
i = 1, . . ., n such that

ai
n1,n2,...,nN

= αib
i
n1,n2,...,nN

+ βi ∀ i ∈ N

3.1.2 Nash solutions with mixed strategies

Definition 3.3. The mixed strategies(y∗1, . . ., y∗N ) with y∗i ∈ ΞMi for all i ∈ N
form a Nash equilibrium solution if
∑
n1

· · ·
∑
nN

y∗1
n1

y∗2
n2
· · · y∗NnN

a1
n1,...,nN

≥
∑
n1

· · ·
∑
nN

y1
n1

y∗2
n2
· · · y∗NnN

a1
n1,...,nN

∀ y1 ∈ ΞM1

∑
n1

· · ·
∑
nN

y∗1
n1

y∗2
n2
· · · y∗NnN

a2
n1,...,nN

≥
∑
n1

· · ·
∑
nN

y∗1
n1

y2
n2
· · · y∗NnN

a2
n1,...,nN

∀ y2 ∈ ΞM2

...∑
n1

· · ·
∑
nN

y∗1
n1

y∗2
n2
· · · y∗NnN

aN
n1,...,nN

≥
∑
n1

· · ·
∑
nN

y∗1
n1

y∗2
n2
· · · yN

nN
aN

n1,...,nN
∀ yN ∈ ΞMN

Note 3.1. Consider the function

ψi
ni

(y1, . . . , yn) =
∑
n1

· · ·
∑
nN

y1
n1

y2
n2
· · · yN

nN
ai

n1,...,nN

−
∑
n1

· · ·
∑
ni−1

∑
ni+1

· · ·
∑
nN

y1
n1
· · · yi−1

ni−1
yi+1

ni+1
· · · yN

nN
ai

n1,...,nN

This represents the difference between the following two quantities:

1. the expected payoff to Playeri if all players adopt mixed strategies(y1, . . ., yN ):
∑
n1

· · ·
∑
nN

y1
n1

y2
n2
· · · yN

nN
ai

n1,...,nN
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2. the expected payoff to Playeri if all players except Playeri adopt mixed
strategies(y1, . . ., yN ) and Playeri uses pure strategyni:

∑
n1

· · ·
∑
ni−1

∑
ni+1

· · ·
∑
nN

y1
n1
· · · yi−1

ni−1
yi+1

ni+1
· · · yN

nN
ai

n1,...,nN

Remember that the mixed strategies include the pure strategies. For example,
(0, 1, 0, . . ., 0) is a mixed strategy that implements pure strategy 2.

For example, in a two-player game, for eachn1 ∈ M1 we have

ψ1
n1

(y1, y2) =
[
y1

1y
2
1a

1
11 + y1

1y
2
2a

1
12 + y1

2y
2
1a

1
21 + y1

2y
2
2a

1
22

]

−
[
y2

1a
1
n11 + y2

2a
1
n12

]

The first term
y1

1y
2
1a

1
11 + y1

1y
2
2a

1
12 + y1

2y
2
1a

1
21 + y1

2y
2
2a

1
22

is the expected value if Player 1 uses mixed strategyy1. The second term

y2
1a

1
n11 + y2

2a
1
n12

is the expected value if Player 1 uses pure strategyn1. Player 2 uses mixed strategy
y2 in both cases.

The next theorem (Theorem 3.1) will guarantee that every game has at least one
Nash equilibrium in mixed strategies. Its proof depends on things that can go
wrong whenψi

ni
(y1, . . ., yn) < 0. So we will define

ci
ni

(y1, . . ., yn) = min{ψi
ni

(y1, . . ., yn), 0}

The proof of Theorem 3.1 then uses the expression

ȳi
ni

=
yi

ni
+ ci

ni

1 +
∑

j∈Mi
ci
j

Note that the denominator is the sum (taken overni) of the terms in the numerator.
If all of the ci

j vanish, we get
ȳi

ni
= yi

ni
.

Theorem 3.1. EveryN -person finite game in normal (strategic) form has a Nash
equilibrium solution using mixed strategies.
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Proof: Defineψi
ni

andci
ni

, as above. Consider the expression

ȳi
ni

=
yi

ni
+ ci

ni

1 +
∑

j∈Mi
ci
j

(1)

We will try to find solutionsyi
ni

to Equation 1 such that

ȳi
ni

= yi
ni

∀ ni ∈ Mi and∀ i = 1, . . ., N

The Brouwer fixed point theorem1 guarantees that at least one such solution exists.

We will show that every Nash equilibrium solution is a solution to Equation 1, and
that every solution to Equation 1 is a Nash equilibrium solution.

Remark: First we will show that every Nash equilibrium solution is a
solution to Equation 1.

Assume that(y∗1, . . ., y∗N ) is a Nash solution. This implies that

ψi
ni

(y1∗, . . ., yn∗) ≥ 0

which implies
ci
ni

(y1∗, . . ., yn∗) = 0

and this holds for allni ∈ Mi and alli = 1, . . ., N . Hence,(y1∗, . . ., yn∗) solves
Equation 1.

Remark: Now the hard part: we must show that every solution to
Equation 1 is a Nash equilibrium solution. We will do this by contra-
diction. That is, we will assume that a mixed strategy(y1, . . ., yN )
is a solution to Equation 1 but is not a Nash solution. This will lead
us to conclude that(y1, . . ., yN ) is not a solution to Equation 1, a
contradiction.

Assume(y1, . . ., yN ) is a solution to Equation 1 but is not a Nash solution. Then
there exists ai ∈ {1, . . ., N} (sayi = 1) with ỹ1 ∈ ΞM1 such that

∑
n1

· · ·
∑
nN

y1
n1

y2
n2
· · · yN

nN
ai

n1,...,nN

<
∑
n1

· · ·
∑
nN

ỹ1
n1

y2
n2
· · · yN

nN
ai

n1,...,nN

1The Brouwer fixed point theorem states that ifS is a compact and convex subset ofRn and if
f : S → S is a continuous function ontoS, then there exists at least onex ∈ S such thatf(x) = x.
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Rewriting the right hand side,
∑
n1

· · ·
∑
nN

y1
n1

y2
n2
· · · yN

nN
ai

n1,...,nN

<
∑
n1

ỹ1
n1

[∑
n2

· · ·
∑
nN

y2
n2
· · · yN

nN
ai

n1,...,nN

]

Now the expression
[∑

n2

· · ·
∑
nN

y2
n2
· · · yN

nN
ai

n1,...,nN

]

is a function ofn1. Suppose this quantity is maximized whenn1 = ñ1. We then
get,

∑
n1

· · ·
∑
nN

y1
n1

y2
n2
· · · yN

nN
ai

n1,...,nN

<
∑
n1

ỹ1
n1

[∑
n2

· · ·
∑
nN

y2
n2
· · · yN

nN
ai

ñ1,...,nN

]

which yields
∑
n1

· · ·
∑
nN

y1
n1

y2
n2
· · · yN

nN
ai

n1,...,nN
(2)

<
∑
n2

· · ·
∑
nN

y2
n2
· · · yN

nN
ai

ñ1,...,nN
(3)

Remark: After this point we don’t really use ˜y again. It was just a
device to obtain ˜n1 which will produce our contradiction. Remember,
throughout the rest of the proof, the values of(y1, . . ., yN ) claim be a
fixed point for Equation 1. If(y1, . . ., yN ) is, in fact, not Nash (as was
assumed), then we have just found a player (who we are calling Player
1) who has apurestrategy ˜n1 that can beat strategyy1 when Players
2, . . ., N use mixed strategies(y2, . . ., yN ).

Usingñ1, Player 1 obtains

ψ1
ñ1

(y1, . . ., yn) < 0

which means that
c1
ñ1

(y1, . . ., yn) < 0
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which implies that ∑

j∈M1

ci
j < 0

since one of the indices inM1 is ñ1 and the rest of theci
j cannot be positive.

Remark: Now the values(y1, . . ., yN ) are in trouble. We have deter-
mined that their claim of being “non-Nash” produces a denominator
in Equation 1 that is less than 1. All we need to do is find some pure
strategy (say ˆn1) for Player 1 withci

n̂i
(y1, . . ., yn) = 0. If we can,

(y1, . . ., yN ) will fail to be a fixed-point for Equation 1, and it will be
y1 that causes the failure. Let’s see what happens. . .

Recall expression 2:
∑
n1

· · ·
∑
nN

y1
n1

y2
n2
· · · yN

nN
ai

n1,...,nN

rewritten as
∑
n1

y1
n1

[∑
n2

· · ·
∑
nN

y2
n2
· · · yN

nN
ai

n1,...,nN

]

and consider the term
[∑

n2

· · ·
∑
nN

y2
n2
· · · yN

nN
ai

n1,...,nN

]
(4)

as a function ofn1 There must be somen1 = n̂1 that minimizes expression 4, with

∑
n1

· · ·
∑
nN

y1
n1

y2
n2
· · · yN

nN
ai

n1,...,nN
≥

[∑
n2

· · ·
∑
nN

y2
n2
· · · yN

nN
ai

n̂1,n2...,nN

]

For that particular strategy we have

ψ1
n̂1

(y1, . . ., yn) ≥ 0

which means that
c1
n̂1

(y1, . . ., yn) = 0

Therefore, for Player 1, we get

ȳ1
n̂1

=
y1

n̂1
+ 0

1 + [something< 0]
> y1

n̂1
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Hence,y1 (which claimed to be a component of the non-Nash solution(y1, . . ., yN ))
fails to solve Equation 1. A contradiction.

The following theorem is an extension of a result forN = 2 given in Chapter 2. It
provides necessary conditions for any interior Nash solution forN -person games.

Theorem 3.2. Any mixed Nash equilibrium solution(y∗1, . . ., y∗N ) in the interior
of ΞM1 × · · · × ΞMN must satisfy
∑
n2

∑
n3

· · ·
∑
nN

y∗2
n2

y∗3
n3
· · · y∗NnN

(a1
n1,n2,n3...,nN

− a1
1,n2,n3...,nN

) = 0 ∀ n1 ∈ M1 − {1}
∑
n1

∑
n3

· · ·
∑
nN

y∗1
n1

y∗3
n3
· · · y∗NnN

(a2
n1,n2,n3...,nN

− a2
n1,1,n3...,nN

) = 0 ∀ n2 ∈ M2 − {1}

...∑
n1

∑
n2

· · ·
∑

nN−1

y∗1
n1

y∗2
n2
· · · y∗NnN

(aN
n1,n2,n3...,nN

− aN
n1,n2,n3...,1) = 0 ∀ nN ∈ MN − {1}

Proof: Left to the reader.

Question 3.1. Consider the 3-player game with the following values for

(a1
n1,n2,n3

, a2
n1,n2,n3

, a3
n1,n2,n3

) :

Forn3 = 1
n2 = 1 n2 = 2

n1 = 1 (1,−1, 0) (0, 1, 0)
n1 = 2 (2, 0, 0) (0, 0, 1)

Forn3 = 2
n2 = 1 n2 = 2

n1 = 1 (1, 0, 1) (0, 0, 0)
n1 = 2 (0, 3, 0) (−1, 2, 0)

For examplea2
212 = 3. Use the above method to find an interior Nash solution.

3.2 N -Person Games in Extensive Form

3.2.1 An introductory example

We will use an example to illustrate some of the issues associates with games in
extensive form.
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Consider a game with two players described by the following tree diagram:

Player 1

Player 2

L M R

L R L R L R

(0,1) (2,-1) (-3,-2) (0,-3) (-2,-1) (1,0)

1
1η

2
1η 2

2η

information set

action

payoffs

Player 1 goes first and chooses an action among{Left, Middle, Right}. Player 2
then follows by choosing an action among{Left, Right}.
The payoff vectors for each possible combination of actions are shown at each
terminating node of the tree. For example, if Player 1 chooses actionu1 = L and
Player 2 chooses actionu2 = R then the payoff is(2,−1). So, Player 1 gains 2
while Player 1 loses 1.

Player 2 does not have complete information about the progress of the game. His
nodes are partitioned among two information sets{η1

2, η
2
2}. When Player 2 chooses

his action, he only knows which information set he is in, not which node.

Player 1 could analyze the game as follows:

• If Player 1 choosesu1 = L then Player 2 would respond withu2 = L
resulting in a payoff of(0, 1).

• If Player 1 choosesu1 ∈ {M, R} then the players are really playing the
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following subgame:

Player 1

Player 2

L M R

L R L R L R

(0,1) (2,-1) (-3,-2) (0,-3) (-2,-1) (1,0)

1
1η

2
1η 2

2η

which can be expressed in normal form as

L R

M (-3,-2) (0,-3)
R (-2,-1) (1,0)

in which (R, R) is a Nash equilibrium strategy in pure strategies.

So it seems reasonable for the players to use the following strategies:

• For Player 1

– If Player 1 is in information setη1
1 chooseR.

• For Player 2

– If Player 2 is in information setη2
1 chooseL.

– If Player 2 is in information setη2
2 chooseR.
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These strategies can be displayed in our tree diagram as follows:

Player 1

Player 2

L M R

L R L R L R

(0,1) (2,-1) (-3,-2) (0,-3) (-2,-1) (1,0)

1
1η

2
1η 2

2η

A pair of pure strategies 
for Players 1 and 2

For games in strategic form, we denote the set of pure strategies for Playeri by
Mi = {1, . . .,mi} and letni ∈ Mi denote the strategy actually selected by Player
i. We will now consider a strategyγi as a function whose domain is the set of
information sets of Playeri and whose range is the collection of possible actions
for Playeri. For the strategy shown above

γ1(η1
1) = R

γ2(η2) =

{
L if η2 = η2

1
R if η2 = η2

2

The players’ task is to choose the best strategy from those available. Using the
notation from Section 3.1.1, the setMi = {1, . . ., mi} now represents the indices
of the possible strategies,{γi

1, . . ., γi
mi
}, for Playeri.

Notice that if either player attempts to change his strategy unilaterally, he will not
improve his payoff. The above strategy is, in fact, a Nash equilibrium strategy as
we will formally define in the next section.
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There is another Nash equilibrium strategy for this game, namely

Player 1

Player 2

L M R

L R L R L R

(0,1) (2,-1) (-3,-2) (0,-3) (-2,-1) (1,0)

1
1η

2
1η 2

2η

An alternate strategy pair
for Players 1 and 2

γ1(η1
1) = L

γ2(η2) =

{
L if η2 = η2

1
L if η2 = η2

2

But this strategy did not arise from the recursive procedure described in Sec-
tion 3.2.1. But(γ1

1, γ
2
1) is, indeed, a Nash equilibrium. Neither player can improve

his payoff by a unilateral change in strategy. Oddly, there is no reason for Player
1 to implement this strategy. If Player 1 chooses to go Left, he can only receive
0. But if Player 1 goes Right, Player 2 will go Right, not Left, and Player 1 will
receive a payoff of 1. This example shows that games in extensive form can have
Nash equilibria that will never be considered for implementation,

3.2.2 Basic ideas

Definition 3.4. AnN -playergame in extensive formis a directed graph with

1. a specific vertex indicating the starting point of the game.

2. N cost functions each assigning a real number to each terminating node of
the graph. Theith cost function represents the gain to Playeri if that node
is reached.
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3. a partition of the nodes among theN players.

4. a sub-partition of the nodes assigned to Playeri into information sets{ηi
k}.

The number of branches emanating from each node of a given information
set is the same, and no node follows another node in the same information
set.

We will use the following notation:

ηi information sets for Playeri.

ui actual actions for Playeri emanating from information sets.

γi(·) a function whose domain is the set of all information sets{ηi}
and whose range is the set of all possible actions{ui}.

The set ofγi(·) is the collection of possible (pure) strategies that Playeri could
use. In the parlance of economic decision theory, theγi aredecision rules.In game
theory, we call them (pure)strategies.

For the game illustrated in Section 3.2.1, we can write down all possible strategy
pairs(γ1, γ2). The text calls theseprofiles.

Player 1 has 3 possible pure strategies:

γ1
1(η

1
1) = L

γ1
2(η

1
1) = M

γ1
3(η

1
1) = R

Player 2 has 4 possible pure strategies which can be listed in tabular form, as
follows:

γ2
1 γ2

2 γ2
3 γ2

4
η2

1 : L R L R
η2

2 : L L R R

Each strategy pair(γ1, γ2), when implemented, results in payoffs to both players
which we will denote by(J1(γ1, γ2), J2(γ1, γ2)). These payoffs produce a game
in strategic (normal) form where the rows and columns correspond to the possible
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pure strategies of Player 1 and Player 2, respectively.

γ2
1 γ2

2 γ2
3 γ2

4

γ1
1 (0,1) (2,-1) (0,1) (2,-1)

γ1
2 (-3,-2) (-3,-2) (0,-3) (0,-3)

γ1
3 (-2,-1) (-2,-1) (1,0) (1,0)

Using Definition 3.1, we have two Nash equilibria, namely

(γ1
1, γ

2
1) with J(γ1

1, γ
2
1) = (0, 1)

(γ1
3, γ

2
3) with J(γ1

3, γ
2
3) = (1, 0)

This formulation allows us to

• focus on identifying “good” decision rules even for complicated strategies

• analyze games with different information structures

• analyze multistage games with players taking more than one “turn”

3.2.3 The structure of extensive games

The general definition of games in extensive form can produce a variety of different
types of games. This section will discuss some of the approaches to classifying
such games. These classification schemes are based on

1. the topology of the directed graph

2. the information structure of the games

3. the sequencing of the players

This section borrows heavily from Başar and Olsder [1]. We will categorize multi-
stage games, that is, games where the players take multiple turns. This classification
scheme extends to differential games that are played in continuous time. In this
section, however, we will use it to classify multi-stage games in extensive form.

Define the following terms:

η̃i
k information available to Playeri at stagek.

xk state of the game at stagek. This completely describes the current
status of the game at any point in time.
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yi
k = hi

k(xk) is the state measurement equation, where

hi
k(·) is the state measurement function

yi
k is the observation of Playeri at statek.

ui
k decision of Playeri at stagek.

The purpose of the functionhi
k is to recognize that the players may not perfect

information regarding the current state of the game. The information available to
Playeri at stagek is then

η̃i
k = {y1

1, . . ., y1
k; y2

1, . . ., y2
k; · · · ; yN

1 , . . ., yN
k }

Based on these ideas, games can be classified as

open loop

η̃i
k = {x1} ∀ k ∈ K

closed loop, perfect state

η̃i
k = {x1, . . ., xk} ∀ k ∈ K

closed loop, imperfect state

η̃i
k = {yi

1, . . ., yi
k} ∀ k ∈ K

memoryless, perfect state

η̃i
k = {x1, xk} ∀ k ∈ K

feedback, perfect state

η̃i
k = {xk} ∀ k ∈ K

feedback, imperfect state

η̃i
k = {yi

k} ∀ k ∈ K
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Example 3.1. Princess and the Monster. This game is played in complete
darkness. A princess and a monster know their starting positions in a cave. The
game ends when they bump into each other. Princess is trying to maximize the time
to the final encounter. The monster is trying to minimize the time. (Open Loop)

Example 3.2. Lady in the Lake. This game is played using a circular lake. The
lady is swimming with maximum speedv`. A man (who can’t swim) runs along
the shore of the lake at a maximum speed ofvm. The lady wins if she reaches shore
and the man is not there. (Feedback)

3.3 Structure in extensive form games

I am grateful to Pengfei Yi and Yong Bao who both contributed to Section 3.3.

The solution of an arbitrary extensive form game may require enumeration. But
under some conditions, the structure of some games will permit a recursive solution
procedure. Many of these results can be found in Başar and Olsder [1].

Definition 3.5. Player i is said to be apredecessorof Playerj if Player i is
closer to the initial vertex of the game’s tree than Playerj.

Definition 3.6. An extensive form game isnestedif each player has access to the
information of his predecessors.

Definition 3.7. (Başar and Olsder [1])A nested extensive form game isladder-
nestedif the only difference between the information available to any player (say
Playeri) and his immediate predecessor (Player(i− 1)) involves only the actions
of Player(i−1), and only at those nodes corresponding to the branches emanating
from singleton information sets of Player(i− 1).

Note 3.2. Every 2-player nested game is ladder-nested

The following three figures illustrate the distinguishing characteristics among non-
nested, nested, and ladder-nested games.

The first two figures represent the same single-act game. The first extensive form
representation is not nested. The second figure is an extensive form version of the
same game that is nested. Thus, we say that this single-act game admits a nested
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extensive form version.

Player 1

Player 2

Player 3

Non-nested version

1,
-1

,0

1,
1,

1

2,
1,

1

0,
1,

0

2,
0,

1

0,
1,

2

0,
-2

,-
1

-1
,2

,0

Player 1

Player 3

Player 2

Nested version

1,
-1

,0

2,
1,

1

1,
1,

1

0,
1,

0

2,
0,

1

0,
-2

,-
1

0,
1,

2

0,
2,

-1

The following figure is an example of a ladder nested game in extensive form.

Player 1

Player 2

Player 3

Ladder-nested

The important feature of ladder-nested games is that the tree can be decomposed
in to sub-trees using the singleton information sets as the starting vertices of the
sub-trees. Each sub-tree can then be analyzed as game in strategic form among
those players involved in the sub-tree.
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As an example, consider the following ladder-nested game:

Player 1

Player 2

Player 3

A ladder nested game

(0,-1,-3) (-1,0,-2) (1,-2,0) (0,1,-1) (-1,-1,-1) (0,0,-3) (1,-3,0) (0,-2,-2)

L R

η1
1

η1
2 η2

2

η1
3 η2

3

This game can be decomposed into two bimatrix games involving Player 2 and
Player 3. The action of Player 1 determines which of the two games between
Player 2 and Player 3 are actually played.

If Player 1 choosesu1 = L then Player 2 and Player 3 play the game

Player 3
L R

Player 2 L (−1,−3) (0,−2)
R (−2, 0) (1,−1)

Suppose Player 2 uses a mixed strategy of choosingL with probability 0.5 andR
with probability 0.5. Suppose Player 3 also uses a mixed strategy of choosingL
with probability 0.5 andR with probability 0.5. Then these mixed strategies are a
Nash equilibrium solution for this sub-game with an expected payoff to all three
players of(0,−0.5,−1.5).

If Player 1 choosesu1 = R then Player 2 and Player 3 play the game

Player 3
L R

Player 2 L (−1,−1) (0,−3)
R (−3, 0) (0,−2)

This subgame has a Nash equilibrium in pure strategies with Player 2 and Player 3
both choosingL. The payoff to all three players in this case is of(−1,−1,−1).
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To summarize the solution for all three players we will introduce the concept of a
behavioral strategy:

Definition 3.8. A behavioral strategy(or locally randomized strategy) assigns
for each information set a probability vector to the alternatives emanating from the
information set.

When using a behavioral strategy, a player simply randomizes over the alternatives
from each information set. When using a mixed strategy, a player randomizes his
selection from the possible pure strategies for the entire game.

The following behavioral strategy produces a Nash equilibrium for all three players:

γ1(η1
1) = L

γ2(η2
1) =

{
L with probability 0.5
R with probability 0.5

γ2(η2
2) =

{
L with probability 1
R with probability 0

γ3(η3
1) =

{
L with probability 0.5
R with probability 0.5

γ3(η3
2) =

{
L with probability 1
R with probability 0

with an expected payoff of(0,−0.5,−1.5).

Note 3.3. When using a behavioral strategy, a player, at each information set,
must specify a probability distribution over the alternatives for that information set.
It is assumed that the choices of alternatives at different information sets are made
independently. Thus it might be reasonable to call such strategies “uncorrelated”
strategies.

Note 3.4. For an arbitrary game, not all mixed strategies can be represented by
using behavioral strategies. Behavioral strategies are easy to find and represent. We
would like to know when we can use behavioral strategies instead of enumerating
all pure strategies and randomizing among those pure strategies.

Theorem 3.3. Every single-stage, ladder-nestedN -person game has at least one
Nash equilibrium using behavioral strategies.

3.3.1 An example by Kuhn
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One can show that every behavioral strategy can be represented as a mixed strat-
egy. But an important question arises when considering mixed strategies vis-à-vis
behavioral strategies: Can a mixed strategy always be represented by a behavioral
strategy?

The following example from Kuhn [2] shows a remarkable result involving behav-
ioral strategies. It shows what can happen if the players do not have a property
calledperfect recall.Moreover, the property ofperfect recallalone is a necessary
and sufficient condition to obtain a one-to-one mapping between behavioral and
mixed strategies for any game.

In a game withperfect recall, each player remembers everything he knew at
previous moves and all of his choices at these moves.

A zero-sum game involves two players and a deck of cards. A card is dealt to each
player. If the cards are not different, two more cards are dealt until one player has
a higher card than the other.

The holder of the high card receives $1 from his opponent. The player with the
high card can choose to either stop the game or continue.

If the game continues, Player 1 (who forgets whether he has the high or low card)
can choose to leave the cards as they are or trade with his opponent. Another $1 is
then won by the (possibly different) holder of the high card.
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The game can be represented with the following diagram:

Player 1 Player 2

Player 1

Chance

2
1

2
1

S C C S

T K K T

(1,-1) (-1,1)

(0,0) (2,-2) (-2,2) (0,0)

1
1η 2

1η

1
2η

where
S Stop the game
C Continue the game
T Trade cards
K Keep cards

At information setη1
1, Player 1 makes the critical decision that causes him to

eventually lose perfect recall atη1
2. Moreover, it is Player 1’s own action that

causes this loss of information (as opposed to Player 2 causing the loss). This is
the reason why behavioral strategies fail for Player 1 in this problem.

Define the following pure strategies for Player 1:

γ1
1(η

1) =

{
S if η1 = η1

1
T if η1 = η1

2
γ1

2(η
1) =

{
S if η1 = η1

1
K if η1 = η1

2

γ1
3(η

1) =

{
C if η1 = η1

1
T if η1 = η1

2
γ1

4(η
1) =

{
C if η1 = η1

1
K if η1 = η1

2

and for Player 2:
γ2

1(η
2
1) = C γ2

2(η
2
1) = S
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This results in the following strategic (normal) form game:

γ2
1 γ2

2
γ1

1 (1/2,−1/2) (0, 0)
γ1

2 (−1/2, 1/2) (0, 0)
γ1

3 (0, 0) (−1/2, 1/2)
γ1

4 (0, 0) (1/2,−1/2)

Question 3.2. Show that the mixed strategy for Player 1:

(1
2, 0, 0, 1

2)

and the mixed strategy for Player 2:

(1
2, 1

2)

result in a Nash equilibrium with expected payoff(1
4,−1

4).

Question 3.3. Suppose that Player 1 uses a behavioral strategy(x, y) defined
as follows: Letx ∈ [0, 1] be the probability Player 1 choosesS when he is in
information setη1

1, and lety ∈ [0, 1] be the probability Player 1 choosesT when he
is in information setη1

2.

Also suppose that Player 2 uses a behavioral strategy(z) wherez ∈ [0, 1] is the
probability Player 2 choosesS when he is in information setη2

1.

Let Ei((x, y), z) denote the expected payoff to Playeri = 1, 2 when using behav-
ioral strategies(x, y) and(z). Show that,

E1((x, y), z) = (x− z)(y − 1
2)

andE1((x, y), z) = −E2((x, y), z) for anyx, y andz.

Furthermore, consider
max
x,y

min
z

(x− z)(y − 1
2)

and show that the every equilibrium solution in behavioral strategies must have
y = 1

2 where
E1((x, 1

2), z) = −E2((x, 1
2), z) = 0.

Therefore, using only behavioral strategies, the expected payoff will be(0, 0). If
Player 1 is restricted to using only behavioral strategies, he can guarantee, at most,
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an expected gain of 0. But if he randomizes over all of his pure strategies and stays
with that strategy throughout the game, Player 1 can get an expected payoff of1

4.

Any behavioral strategy can be expressed as a mixed strategy. But, without perfect
recall, not all mixed strategies can be implemented using behavioral strategies.

Theorem 3.4. (Kuhn [2]) Perfect recall is a necessary and sufficient condition
for all mixed strategies to be induced by behavioral strategies.

A formal proof of this theorem is in [2]. Here is a brief sketch: We would like to
know under what circumstances there is a 1-1 correspondence between behavioral
and mixed strategies. Suppose a mixed strategy consists of the following mixture
of three pure strategies:

choose γa with probability 1
2

choose γb with probability 1
3

choose γc with probability 1
6

Suppose that strategiesγb andγc lead the game to information setη. Suppose that
strategyγa does not go toη. If a player is told he is in informationη, he can use
perfect recall to backtrack completely through the game to learn whether strategy
γb or γc was used. Supposeγb(η) = ub andγc(η) = uc. Then if the player is inη,
he can implement the mixed strategy with the following behavioral strategy:

choose ub with probability 2
3

choose uc with probability 1
3

3.3.2 Signaling information sets

A game may not have perfect recall, but some strategies could take the game
along paths that, as sub-trees, have the property of perfect recall. Kuhn [2] and
Thompson [4] employ the concept ofsignaling information sets. In essence, a
signaling information set is that point in the game where a decision by a player
could cause him to lose the property of perfect recall.
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In the following three games, the signaling information sets are marked with (*):

Chance

Player 2Â

1/2

Player 1

Player 1

Â Signaling Set

1/2

Player 2

Â Player 1

Player 1

Â Signaling Set
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Player 2ÂPlayer 2

Player 2

Â Signaling Set
Player 1

Â

3.4 Stackelberg solutions

3.4.1 Basic ideas

This early idea in game theory is due to Stackelberg [3]. Its features include:

• hierarchical ordering of the players

• strategy decisions are made and announced sequentially

• one player has the ability to enforce his strategy on others

This approach introduce is notion of arational reactionof one player to another’s
choice of strategy.

Example 3.3. Consider the bimatrix game

γ2
1 γ2

2 γ2
3

γ1
1 (0, 1) (−2,−1) (−3

2,−2
3)

γ1
2 (−1,−2) (−1, 0) (−3,−1)

γ1
2 (1, 0) (−2,−1) (−2, 1

2)

Note that(γ1
2, γ

2
2) is a Nash solution with value(−1, 0).
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Suppose that Player 1 must “lead” by announcing his strategy, first. Is this an
advantage or disadvantage? Note that,

If Player 1 chooses γ1
1 Player 2 will respond with γ2

1
If Player 1 chooses γ1

2 Player 2 will respond with γ2
2

If Player 1 chooses γ1
3 Player 2 will respond with γ2

3

The best choice for Player 1 isγ1
1 which will yield a value of(0, 1). For this

game, theStackelberg solutionis an improvement over the Nash solution forboth
players.

If we let
γ1

1 = L
γ1

2 = M
γ1

3 = R

γ2
1 = L

γ2
2 = M

γ2
3 = R

we can implement the Stackelberg strategy by playing the following game in
extensive form:

Player 1

Player 2

L
M

R

(-1-2)  (-1,0)  (-3,-1)

(1,0)  (-2,-1)  (-2, 1/2)(0,1) (-2,-1)  (-3/2,- 2/3)

M R

L M R

L M R

Stackelberg

L
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The Nash solution can be obtained by playing the following game:

Player 1

Player 2

L
M

R

(-1-2)  (-1,0) (-3,-1)

(1,0)  (-2,-1)  (-2, 1/2)(0,1)  (-2,-1)  (-3/2,- 2/3)

M R

L M R

L M R

Nash

L

There may not be a unique response to the leader’s strategy. Consider the following
example:

γ2
1 γ2

2 γ2
3

γ1
1 (0, 0) (−1, 0) (−3,−1)

γ1
2 (−2, 1) (−2, 0) (1, 1)

In this case

If Player 1 chooses γ1
1 Player 2 will respond with γ2

1 or γ2
2

If Player 1 chooses γ1
2 Player 2 will respond with γ2

1 or γ2
3

One solution approach uses a minimax philosophy. That is, Player 1 should secure
his profits against the alternative rational reactions of Player 2. If Player 1 chooses
γ1

1 the least he will obtain is−1, and he choosesγ1
2 the least he will obtain is−2.

So his (minimax) Stackelberg strategy isγ1
1.

Question 3.4. In this situation, one might consider mixed Stackelberg strategies.
How could such strategies be defined, when would they be useful, and how would
they be implemented?

3-26



Note 3.5. When the follower’s response is not unique, a natural solution approach
would be toside-payments. In other words, Player 1 could provide an incentive
to Player 2 to choose an action in Player 1’s best interest. Letε > 0 be a small
side-payment. Then the players would be playing the Stackelberg game

γ2
1 γ2

2 γ2
3

γ1
1 (−ε, ε) (−1, 0) (−3,−1)

γ1
2 (−2, 1) (−2, 0) (1− ε, 1 + ε)

3.4.2 The formalities

Let Γ1 andΓ2 denote the sets of pure strategies for Player 1 and Player 2, respec-
tively. Let J i(γ1, γ2) denote the payoff to Playeri if Player 1 chooses strategy
γ1 ∈ Γ1 and Player 2 chooses strategyγ2 ∈ Γ2. Let

R2(γ1) ≡ {ξ ∈ Γ2 | J2(γ1, ξ) ≥ J2(γ1, γ2) ∀ γ2 ∈ Γ2}

Note thatR2(γ1) ⊆ Γ2 and we callR2(γ1) the rational reaction of Player 2 to
Player 1’s choice ofγ1. A Stackelberg strategycan be formally defined as the ˆγ1

that solves

min
γ2∈R2(γ̂1)

J1(γ̂1, γ2) = max
γ1∈Γ1

min
γ2∈R2(γ1)

J1(γ1, γ2) = J1∗

Note 3.6. If R2(γ1) is a singleton for allγ1 ∈ Γ1 then there exists a mapping

ψ2 : Γ1 → Γ2

such thatR2(γ1) = {γ2} implies γ2 = ψ2(γ1). In this case, the definition of a
Stackelberg solution can be simplified to the ˆγ1 that solves

J1(γ̂1, ψ2(γ1)) = max
γ1∈Γ1

J1(γ1, ψ2(γ1))

It is easy to prove the following:

Theorem 3.5. Every two-person finite game has a Stackelberg solution for the
leader.

Note 3.7. From the follower’s point of view, his choice of strategy in a Stackelberg
game is always optimal (i.e., the best he can do).
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Question 3.5. Let J1∗ (defined as above) denote the Stackelberg value for the
leader Player 1, and letJ1

N denote any Nash equilibrium solution value for the
same player. What is the relationship (bigger, smaller, etc.) betweenJ1∗ andJ1

N?
What additional conditions (if any) do you need to place on the game to guarantee
that relationship?
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